Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295942331> ?p ?o ?g. }
- W4295942331 endingPage "419" @default.
- W4295942331 startingPage "406" @default.
- W4295942331 abstract "In order to optimize the operation parameters of cutter suction dredger in real time and adjust productivity as needed, a construction optimization strategy based on real-time productivity regression analysis is proposed. Machine learning methods, including Support Vector Regression (SVR), Gradient Boosting Regression Tree (GBRT), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM) and a Super Learner that made up of them, are used to mine relevant features based on the big data of operation characteristics and equipment status. Firstly, the working principle of cutter suction dredger is analyzed, the features that need real-time monitoring are determined, and the above features are classified. Then, some missing values and outliers in the data are deleted. Next, Lasso method is used to eliminate the variables that are not related to the regression target, and the redundant variables are combined. In addition, five machine learning methods are used to train and test the off-line productivity data of cutter suction dredger. And they are used to fit recent online productivity data. Super Learner performed best, which achieved the highest R 2 (0.917), the lowest RMSE (75.096) and MAE (61.422) in the five models for online regression. Furthermore, the calculation time of each model is discussed, and the feasibility of the method proposed in this study for real-time regression of online productivity data has been confirmed. Finally, the importance of characteristics is analyzed to provide guidance for dredging operations under restricted construction conditions. According to the regression results and the importance of features, operators can give priority to adjusting some features to adjust the real-time construction productivity of dredger." @default.
- W4295942331 created "2022-09-16" @default.
- W4295942331 creator A5039812791 @default.
- W4295942331 creator A5041839932 @default.
- W4295942331 creator A5085904242 @default.
- W4295942331 creator A5090632267 @default.
- W4295942331 date "2022-09-15" @default.
- W4295942331 modified "2023-09-24" @default.
- W4295942331 title "Productivity regression analysis of cutter suction dredger considering operating characteristics and equipment status" @default.
- W4295942331 cites W1970837005 @default.
- W4295942331 cites W2023281330 @default.
- W4295942331 cites W2070493638 @default.
- W4295942331 cites W2080144309 @default.
- W4295942331 cites W2084002694 @default.
- W4295942331 cites W2144182447 @default.
- W4295942331 cites W2154053567 @default.
- W4295942331 cites W2156528663 @default.
- W4295942331 cites W2610219179 @default.
- W4295942331 cites W2776575067 @default.
- W4295942331 cites W2792919287 @default.
- W4295942331 cites W2885442465 @default.
- W4295942331 cites W2886453146 @default.
- W4295942331 cites W2887199168 @default.
- W4295942331 cites W2904875692 @default.
- W4295942331 cites W2906922093 @default.
- W4295942331 cites W2943113942 @default.
- W4295942331 cites W2944033355 @default.
- W4295942331 cites W2968001108 @default.
- W4295942331 cites W3084946223 @default.
- W4295942331 cites W3110222350 @default.
- W4295942331 cites W3113923526 @default.
- W4295942331 cites W3121429156 @default.
- W4295942331 cites W3158785097 @default.
- W4295942331 cites W3164500332 @default.
- W4295942331 cites W3164966370 @default.
- W4295942331 cites W3182451204 @default.
- W4295942331 cites W3187503080 @default.
- W4295942331 cites W3197888786 @default.
- W4295942331 cites W3202854056 @default.
- W4295942331 doi "https://doi.org/10.1177/14750902221121915" @default.
- W4295942331 hasPublicationYear "2022" @default.
- W4295942331 type Work @default.
- W4295942331 citedByCount "0" @default.
- W4295942331 crossrefType "journal-article" @default.
- W4295942331 hasAuthorship W4295942331A5039812791 @default.
- W4295942331 hasAuthorship W4295942331A5041839932 @default.
- W4295942331 hasAuthorship W4295942331A5085904242 @default.
- W4295942331 hasAuthorship W4295942331A5090632267 @default.
- W4295942331 hasConcept C105795698 @default.
- W4295942331 hasConcept C119857082 @default.
- W4295942331 hasConcept C12267149 @default.
- W4295942331 hasConcept C124101348 @default.
- W4295942331 hasConcept C127413603 @default.
- W4295942331 hasConcept C139719470 @default.
- W4295942331 hasConcept C141404830 @default.
- W4295942331 hasConcept C152877465 @default.
- W4295942331 hasConcept C154945302 @default.
- W4295942331 hasConcept C162324750 @default.
- W4295942331 hasConcept C169258074 @default.
- W4295942331 hasConcept C204983608 @default.
- W4295942331 hasConcept C33923547 @default.
- W4295942331 hasConcept C41008148 @default.
- W4295942331 hasConcept C46686674 @default.
- W4295942331 hasConcept C48921125 @default.
- W4295942331 hasConcept C70153297 @default.
- W4295942331 hasConcept C79337645 @default.
- W4295942331 hasConcept C83546350 @default.
- W4295942331 hasConceptScore W4295942331C105795698 @default.
- W4295942331 hasConceptScore W4295942331C119857082 @default.
- W4295942331 hasConceptScore W4295942331C12267149 @default.
- W4295942331 hasConceptScore W4295942331C124101348 @default.
- W4295942331 hasConceptScore W4295942331C127413603 @default.
- W4295942331 hasConceptScore W4295942331C139719470 @default.
- W4295942331 hasConceptScore W4295942331C141404830 @default.
- W4295942331 hasConceptScore W4295942331C152877465 @default.
- W4295942331 hasConceptScore W4295942331C154945302 @default.
- W4295942331 hasConceptScore W4295942331C162324750 @default.
- W4295942331 hasConceptScore W4295942331C169258074 @default.
- W4295942331 hasConceptScore W4295942331C204983608 @default.
- W4295942331 hasConceptScore W4295942331C33923547 @default.
- W4295942331 hasConceptScore W4295942331C41008148 @default.
- W4295942331 hasConceptScore W4295942331C46686674 @default.
- W4295942331 hasConceptScore W4295942331C48921125 @default.
- W4295942331 hasConceptScore W4295942331C70153297 @default.
- W4295942331 hasConceptScore W4295942331C79337645 @default.
- W4295942331 hasConceptScore W4295942331C83546350 @default.
- W4295942331 hasFunder F4320321001 @default.
- W4295942331 hasIssue "2" @default.
- W4295942331 hasLocation W42959423311 @default.
- W4295942331 hasOpenAccess W4295942331 @default.
- W4295942331 hasPrimaryLocation W42959423311 @default.
- W4295942331 hasRelatedWork W1996541855 @default.
- W4295942331 hasRelatedWork W2018697919 @default.
- W4295942331 hasRelatedWork W2325374573 @default.
- W4295942331 hasRelatedWork W3097340282 @default.
- W4295942331 hasRelatedWork W3204641204 @default.
- W4295942331 hasRelatedWork W3212730154 @default.
- W4295942331 hasRelatedWork W4200057378 @default.