Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295951341> ?p ?o ?g. }
- W4295951341 endingPage "101071" @default.
- W4295951341 startingPage "101071" @default.
- W4295951341 abstract "Mutual coupling between different states of active unit cells is a challenging factor that has not been considered in the design of reconfigurable transmissive or reflective metasurface antennas. In this work, we propose a gain-predicting deep neural network (GPDNN) that predicts the radiation patterns of a reconfigurable reflective metasurface (RRM) composed of a 12-by-12 one-bit active unit cell array and is used to search for the best combination of unit cell on-or-off states for beam forming. First, the GPDNN is trained to accurately predict the radiation pattern based on the combination of unit cells. Second, it is merged with a search algorithm that retrieves the best on-or-off states near the boundary of the two states determined using the conventional beam-forming calculation method. As proof of concept, the proposed scheme is employed to find the highest realized gain in five directions: (θ, φ) = (0°, 0°), (−60°, 0°), (60°, 0°), (−60°, 90°), and (60°, 90°). The proposed deep neural network–based search algorithm takes 3.27 × 10−7 seconds per design, which is considerably faster than that based on full-wave simulation (1.5 h per design). The accuracy of the proposed method is verified by comparing the predicted results with those of the full-wave simulation. Finally, the best combination of on-or-off states for each beam-forming case is experimentally verified by measuring the radiation pattern. Compared with the conventional design, the maximum gain increases up to 0.771 dB at (θ, φ) = (−60°, 0°), and the side lobe levels decrease substantially in the other cases." @default.
- W4295951341 created "2022-09-16" @default.
- W4295951341 creator A5014221159 @default.
- W4295951341 creator A5019871359 @default.
- W4295951341 creator A5023561994 @default.
- W4295951341 creator A5025186204 @default.
- W4295951341 creator A5040210626 @default.
- W4295951341 creator A5052205115 @default.
- W4295951341 creator A5087881011 @default.
- W4295951341 date "2022-12-01" @default.
- W4295951341 modified "2023-10-01" @default.
- W4295951341 title "Reconfigurable reflective metasurface reinforced by optimizing mutual coupling based on a deep neural network" @default.
- W4295951341 cites W1629338704 @default.
- W4295951341 cites W1965871330 @default.
- W4295951341 cites W1966140214 @default.
- W4295951341 cites W1999050308 @default.
- W4295951341 cites W2024685667 @default.
- W4295951341 cites W2082432933 @default.
- W4295951341 cites W2091432990 @default.
- W4295951341 cites W2094499580 @default.
- W4295951341 cites W2112796928 @default.
- W4295951341 cites W2400368768 @default.
- W4295951341 cites W2467999842 @default.
- W4295951341 cites W2763160469 @default.
- W4295951341 cites W2766129750 @default.
- W4295951341 cites W2884001105 @default.
- W4295951341 cites W2901631311 @default.
- W4295951341 cites W2949960465 @default.
- W4295951341 cites W2962797490 @default.
- W4295951341 cites W2962970995 @default.
- W4295951341 cites W2993464084 @default.
- W4295951341 cites W3005705023 @default.
- W4295951341 cites W3008967825 @default.
- W4295951341 cites W3023192521 @default.
- W4295951341 cites W3094235888 @default.
- W4295951341 cites W3100142168 @default.
- W4295951341 cites W3119664303 @default.
- W4295951341 cites W3127785322 @default.
- W4295951341 cites W3129571311 @default.
- W4295951341 cites W3158743873 @default.
- W4295951341 cites W3164210511 @default.
- W4295951341 cites W3171334002 @default.
- W4295951341 cites W3185155986 @default.
- W4295951341 cites W4290548465 @default.
- W4295951341 doi "https://doi.org/10.1016/j.photonics.2022.101071" @default.
- W4295951341 hasPublicationYear "2022" @default.
- W4295951341 type Work @default.
- W4295951341 citedByCount "6" @default.
- W4295951341 countsByYear W42959513412022 @default.
- W4295951341 countsByYear W42959513412023 @default.
- W4295951341 crossrefType "journal-article" @default.
- W4295951341 hasAuthorship W4295951341A5014221159 @default.
- W4295951341 hasAuthorship W4295951341A5019871359 @default.
- W4295951341 hasAuthorship W4295951341A5023561994 @default.
- W4295951341 hasAuthorship W4295951341A5025186204 @default.
- W4295951341 hasAuthorship W4295951341A5040210626 @default.
- W4295951341 hasAuthorship W4295951341A5052205115 @default.
- W4295951341 hasAuthorship W4295951341A5087881011 @default.
- W4295951341 hasConcept C11413529 @default.
- W4295951341 hasConcept C119599485 @default.
- W4295951341 hasConcept C120665830 @default.
- W4295951341 hasConcept C121332964 @default.
- W4295951341 hasConcept C122637931 @default.
- W4295951341 hasConcept C127413603 @default.
- W4295951341 hasConcept C131584629 @default.
- W4295951341 hasConcept C134306372 @default.
- W4295951341 hasConcept C145420912 @default.
- W4295951341 hasConcept C151764478 @default.
- W4295951341 hasConcept C153385146 @default.
- W4295951341 hasConcept C154945302 @default.
- W4295951341 hasConcept C168834538 @default.
- W4295951341 hasConcept C181856588 @default.
- W4295951341 hasConcept C184720557 @default.
- W4295951341 hasConcept C191897082 @default.
- W4295951341 hasConcept C192562407 @default.
- W4295951341 hasConcept C21822782 @default.
- W4295951341 hasConcept C33923547 @default.
- W4295951341 hasConcept C41008148 @default.
- W4295951341 hasConcept C50644808 @default.
- W4295951341 hasConcept C62354387 @default.
- W4295951341 hasConcept C76155785 @default.
- W4295951341 hasConceptScore W4295951341C11413529 @default.
- W4295951341 hasConceptScore W4295951341C119599485 @default.
- W4295951341 hasConceptScore W4295951341C120665830 @default.
- W4295951341 hasConceptScore W4295951341C121332964 @default.
- W4295951341 hasConceptScore W4295951341C122637931 @default.
- W4295951341 hasConceptScore W4295951341C127413603 @default.
- W4295951341 hasConceptScore W4295951341C131584629 @default.
- W4295951341 hasConceptScore W4295951341C134306372 @default.
- W4295951341 hasConceptScore W4295951341C145420912 @default.
- W4295951341 hasConceptScore W4295951341C151764478 @default.
- W4295951341 hasConceptScore W4295951341C153385146 @default.
- W4295951341 hasConceptScore W4295951341C154945302 @default.
- W4295951341 hasConceptScore W4295951341C168834538 @default.
- W4295951341 hasConceptScore W4295951341C181856588 @default.
- W4295951341 hasConceptScore W4295951341C184720557 @default.
- W4295951341 hasConceptScore W4295951341C191897082 @default.
- W4295951341 hasConceptScore W4295951341C192562407 @default.