Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295951380> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4295951380 abstract "Although fractional and classical order cubic quintic nonlinear Schrödinger (NS) equation and cubic nonlinear Schrödinger equation are used simultaneously in nonlinear optics disciplines, the fractional-order NS equations are nowadays extensively used due to their higher coherence. The space-time fractional cubic quintic and nonlinear cubic Schrödinger equations integrating beta derivative are significant in modeling to nonlinear optics, photonics, plasmas, condensed matter physics, and other domains. The fractional wave transformation is exploited to translate the space-time fractional equations and the optical soliton solutions in the form of exponential, trigonometric, and hyperbolic functions with free parameters have been established in this article by putting to use the improved Bernoulli sub-equation function (IBSEF) approach. The shape of the solutions includes kink, periodic, bell-shaped soliton, breathing soliton, bright soliton, and singular kink type soliton. The physical features of the solitons have been revealed by depicting 3D, 2D, contour, and density graphs of some of the solutions. The results demonstrate that the IBSEF approach is simple, straightforward, effective and that it can be applied to a wide range of nonlinear fractional-order models in optics and communication engineering to achieve soliton solutions." @default.
- W4295951380 created "2022-09-16" @default.
- W4295951380 creator A5042426376 @default.
- W4295951380 creator A5056179445 @default.
- W4295951380 creator A5082616590 @default.
- W4295951380 creator A5082972719 @default.
- W4295951380 date "2022-09-15" @default.
- W4295951380 modified "2023-10-15" @default.
- W4295951380 title "Assorted optical solitons of the cubic and cubic quintic nonlinear Schrödinger equation featuring beta derivative" @default.
- W4295951380 doi "https://doi.org/10.22541/au.166325945.54477289/v1" @default.
- W4295951380 hasPublicationYear "2022" @default.
- W4295951380 type Work @default.
- W4295951380 citedByCount "0" @default.
- W4295951380 crossrefType "posted-content" @default.
- W4295951380 hasAuthorship W4295951380A5042426376 @default.
- W4295951380 hasAuthorship W4295951380A5056179445 @default.
- W4295951380 hasAuthorship W4295951380A5082616590 @default.
- W4295951380 hasAuthorship W4295951380A5082972719 @default.
- W4295951380 hasBestOaLocation W42959513801 @default.
- W4295951380 hasConcept C121332964 @default.
- W4295951380 hasConcept C124966035 @default.
- W4295951380 hasConcept C134306372 @default.
- W4295951380 hasConcept C154249771 @default.
- W4295951380 hasConcept C158622935 @default.
- W4295951380 hasConcept C33923547 @default.
- W4295951380 hasConcept C37914503 @default.
- W4295951380 hasConcept C62520636 @default.
- W4295951380 hasConcept C78854221 @default.
- W4295951380 hasConcept C83774755 @default.
- W4295951380 hasConcept C87651913 @default.
- W4295951380 hasConceptScore W4295951380C121332964 @default.
- W4295951380 hasConceptScore W4295951380C124966035 @default.
- W4295951380 hasConceptScore W4295951380C134306372 @default.
- W4295951380 hasConceptScore W4295951380C154249771 @default.
- W4295951380 hasConceptScore W4295951380C158622935 @default.
- W4295951380 hasConceptScore W4295951380C33923547 @default.
- W4295951380 hasConceptScore W4295951380C37914503 @default.
- W4295951380 hasConceptScore W4295951380C62520636 @default.
- W4295951380 hasConceptScore W4295951380C78854221 @default.
- W4295951380 hasConceptScore W4295951380C83774755 @default.
- W4295951380 hasConceptScore W4295951380C87651913 @default.
- W4295951380 hasLocation W42959513801 @default.
- W4295951380 hasOpenAccess W4295951380 @default.
- W4295951380 hasPrimaryLocation W42959513801 @default.
- W4295951380 hasRelatedWork W1964841007 @default.
- W4295951380 hasRelatedWork W2036733678 @default.
- W4295951380 hasRelatedWork W2040191469 @default.
- W4295951380 hasRelatedWork W2068463674 @default.
- W4295951380 hasRelatedWork W2087398840 @default.
- W4295951380 hasRelatedWork W2385866158 @default.
- W4295951380 hasRelatedWork W3205034061 @default.
- W4295951380 hasRelatedWork W3208709805 @default.
- W4295951380 hasRelatedWork W4211072189 @default.
- W4295951380 hasRelatedWork W4282007292 @default.
- W4295951380 isParatext "false" @default.
- W4295951380 isRetracted "false" @default.
- W4295951380 workType "article" @default.