Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295956535> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4295956535 endingPage "17" @default.
- W4295956535 startingPage "7" @default.
- W4295956535 abstract "Applied researchers are frequently faced with the issue of model uncertainty in situations where many possible models exist. For large model space in regression analysis, the challenge has always been how to select a single model among competing large model space when making inferences. Bayesian Model Averaging (BMA) is a technique designed to help account for the uncertainty inherent in the model selection process. Informative prior distributions related to a natural conjugate prior specification are investigated under a limited choice of a single scalar hyper parameter called g-prior which corresponds to the degree of prior uncertainty on regression coefficients. This study focuses on situations with extremely large model space made up of large set of regressors generated by a small number of observations, when estimating model parameters. A set of g-prior structures in literature are considered with a view to identify an improved g-prior specification for regression coefficients in Bayesian Model Averaging. The study demonstrates the sensitivity of posterior results to the choice of g-prior on simulated dataand real-life data. Markov Chain Monte Carlo (MCMC) are used to generate a process which moves through large model space to adequately identify the high posterior probability models using the Markov Chain Monte Carlo Model Composition (MC3), a method applicable under Bayesian Model Sampling (BMS). To assess the sensitivity and predictive ability of the g-priors,predictive criteria like Log Predictive Score (LPS) and Log Marginal Likelihood (LML) are employed. The results reveal a g-prior structure that exhibited equally competitive and consistent predictive ability among considered g-prior structures in literature." @default.
- W4295956535 created "2022-09-16" @default.
- W4295956535 creator A5036284858 @default.
- W4295956535 creator A5041340854 @default.
- W4295956535 date "2022-08-30" @default.
- W4295956535 modified "2023-10-14" @default.
- W4295956535 title "ZELLNER’S G-PRIORS IN BAYESIAN MODEL AVERAGING OF LARGE MODEL SPACE USING MARKOV CHAIN MONTE CARLO MODEL COMPOSITION APPLICABLE UNDER BAYESIAN MODEL SAMPLING" @default.
- W4295956535 doi "https://doi.org/10.56892/bimajst.v6i02.350" @default.
- W4295956535 hasPublicationYear "2022" @default.
- W4295956535 type Work @default.
- W4295956535 citedByCount "0" @default.
- W4295956535 crossrefType "journal-article" @default.
- W4295956535 hasAuthorship W4295956535A5036284858 @default.
- W4295956535 hasAuthorship W4295956535A5041340854 @default.
- W4295956535 hasConcept C105795698 @default.
- W4295956535 hasConcept C107673813 @default.
- W4295956535 hasConcept C111350023 @default.
- W4295956535 hasConcept C149569020 @default.
- W4295956535 hasConcept C158424031 @default.
- W4295956535 hasConcept C160234255 @default.
- W4295956535 hasConcept C177769412 @default.
- W4295956535 hasConcept C191413810 @default.
- W4295956535 hasConcept C19499675 @default.
- W4295956535 hasConcept C26004113 @default.
- W4295956535 hasConcept C33923547 @default.
- W4295956535 hasConcept C37903108 @default.
- W4295956535 hasConcept C41008148 @default.
- W4295956535 hasConcept C57830394 @default.
- W4295956535 hasConcept C93959086 @default.
- W4295956535 hasConcept C95923904 @default.
- W4295956535 hasConceptScore W4295956535C105795698 @default.
- W4295956535 hasConceptScore W4295956535C107673813 @default.
- W4295956535 hasConceptScore W4295956535C111350023 @default.
- W4295956535 hasConceptScore W4295956535C149569020 @default.
- W4295956535 hasConceptScore W4295956535C158424031 @default.
- W4295956535 hasConceptScore W4295956535C160234255 @default.
- W4295956535 hasConceptScore W4295956535C177769412 @default.
- W4295956535 hasConceptScore W4295956535C191413810 @default.
- W4295956535 hasConceptScore W4295956535C19499675 @default.
- W4295956535 hasConceptScore W4295956535C26004113 @default.
- W4295956535 hasConceptScore W4295956535C33923547 @default.
- W4295956535 hasConceptScore W4295956535C37903108 @default.
- W4295956535 hasConceptScore W4295956535C41008148 @default.
- W4295956535 hasConceptScore W4295956535C57830394 @default.
- W4295956535 hasConceptScore W4295956535C93959086 @default.
- W4295956535 hasConceptScore W4295956535C95923904 @default.
- W4295956535 hasIssue "02" @default.
- W4295956535 hasLocation W42959565351 @default.
- W4295956535 hasOpenAccess W4295956535 @default.
- W4295956535 hasPrimaryLocation W42959565351 @default.
- W4295956535 hasRelatedWork W2081420412 @default.
- W4295956535 hasRelatedWork W2162457363 @default.
- W4295956535 hasRelatedWork W2372769283 @default.
- W4295956535 hasRelatedWork W2617021092 @default.
- W4295956535 hasRelatedWork W2752607453 @default.
- W4295956535 hasRelatedWork W2944437890 @default.
- W4295956535 hasRelatedWork W4246698572 @default.
- W4295956535 hasRelatedWork W4250043636 @default.
- W4295956535 hasRelatedWork W4295956535 @default.
- W4295956535 hasRelatedWork W2184215046 @default.
- W4295956535 hasVolume "6" @default.
- W4295956535 isParatext "false" @default.
- W4295956535 isRetracted "false" @default.
- W4295956535 workType "article" @default.