Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295956599> ?p ?o ?g. }
- W4295956599 endingPage "108448" @default.
- W4295956599 startingPage "108448" @default.
- W4295956599 abstract "Terrain surface roughness (TSR) is an important parameter in various geoscience applications. TSR can be easily estimated from digital elevation models (DEMs), which are generally derived from the interpolation of Light Detection and Ranging (LiDAR) point clouds. Thus, the quality of TSR is inevitably influenced by data density and interpolation method. However, to what extent the data density can be reduced and which method is more accurate than the others for quantifying TSR are still ambiguous. Thus, this paper evaluated the performance of five classical interpolation methods (ordinary kriging (OK), thin plate spline (TPS), natural neighbor (NN), Delaunay with linear interpolation (TIN) and inverse distance weighting (IDW)) for quantifying TSR under different airborne LiDAR data densities (90 %, 70 %, 50 %, 30 % and 10 % of the original data) in three study sites (samp1, samp2 and samp3) with different terrain characteristics. Results demonstrate that regardless of data density and study sites, TPS is consistently more accurate than the other methods for DEM production in terms of root mean square error (RMSE) and normalized median absolute deviation (NMAD), while IDW produces the worst results. Moreover, the reduction of data density to 50 % of the original data results in no obvious accuracy loss of DEMs for all the interpolation methods. For quantifying TSRs from DEMs, IDW shows the highest accuracy when data density is larger than 50 % in samp1 and samp2, and larger than 70 % in samp3, while TPS obtains the best results in the other densities; however, the surfaces of IDW are very coarse, which makes terrain details unrecognizable. Additionally, the DEM-based TSRs of all the interpolation methods can endure the reduction of LiDAR data to 50 % of the original samples without considerable accuracy decreases, especially for TPS. Overall, TPS can be considered as a promising method for LiDAR DEM production and TSR quantification. • Effects of interpolation method for quantifying terrain roughness are assessed. • LiDAR data density can be reduced to 50 % of the original point cloud. • Thin plate spline is a promising method for quantifying terrain roughness. • Inverse distance weighting method produces coarse surfaces." @default.
- W4295956599 created "2022-09-16" @default.
- W4295956599 creator A5003866201 @default.
- W4295956599 creator A5048107114 @default.
- W4295956599 creator A5062727949 @default.
- W4295956599 creator A5075174479 @default.
- W4295956599 date "2022-11-01" @default.
- W4295956599 modified "2023-10-17" @default.
- W4295956599 title "Effect of interpolation methods on quantifying terrain surface roughness under different data densities" @default.
- W4295956599 cites W1928471770 @default.
- W4295956599 cites W1972508359 @default.
- W4295956599 cites W1978955804 @default.
- W4295956599 cites W1981769764 @default.
- W4295956599 cites W1982157247 @default.
- W4295956599 cites W1984218502 @default.
- W4295956599 cites W1996475816 @default.
- W4295956599 cites W2002948762 @default.
- W4295956599 cites W2008432657 @default.
- W4295956599 cites W2011938923 @default.
- W4295956599 cites W2016102955 @default.
- W4295956599 cites W2024050701 @default.
- W4295956599 cites W2026105918 @default.
- W4295956599 cites W2028515670 @default.
- W4295956599 cites W2030005637 @default.
- W4295956599 cites W2035210445 @default.
- W4295956599 cites W2052528093 @default.
- W4295956599 cites W2055580833 @default.
- W4295956599 cites W2058712265 @default.
- W4295956599 cites W2061758459 @default.
- W4295956599 cites W2075752542 @default.
- W4295956599 cites W2076573461 @default.
- W4295956599 cites W2082045605 @default.
- W4295956599 cites W2110720153 @default.
- W4295956599 cites W2115548515 @default.
- W4295956599 cites W2118898434 @default.
- W4295956599 cites W2120612314 @default.
- W4295956599 cites W2121264346 @default.
- W4295956599 cites W2145415008 @default.
- W4295956599 cites W2153759474 @default.
- W4295956599 cites W2325115425 @default.
- W4295956599 cites W2435138640 @default.
- W4295956599 cites W2562383794 @default.
- W4295956599 cites W2759402621 @default.
- W4295956599 cites W2765150644 @default.
- W4295956599 cites W2807980556 @default.
- W4295956599 cites W2927435120 @default.
- W4295956599 cites W2948404297 @default.
- W4295956599 cites W2962914760 @default.
- W4295956599 cites W2969723782 @default.
- W4295956599 cites W2981851020 @default.
- W4295956599 cites W2999884964 @default.
- W4295956599 cites W3028547196 @default.
- W4295956599 cites W3036347340 @default.
- W4295956599 cites W3041453465 @default.
- W4295956599 cites W3111116522 @default.
- W4295956599 cites W3115877206 @default.
- W4295956599 cites W3132865271 @default.
- W4295956599 cites W4205770311 @default.
- W4295956599 doi "https://doi.org/10.1016/j.geomorph.2022.108448" @default.
- W4295956599 hasPublicationYear "2022" @default.
- W4295956599 type Work @default.
- W4295956599 citedByCount "5" @default.
- W4295956599 countsByYear W42959565992022 @default.
- W4295956599 countsByYear W42959565992023 @default.
- W4295956599 crossrefType "journal-article" @default.
- W4295956599 hasAuthorship W4295956599A5003866201 @default.
- W4295956599 hasAuthorship W4295956599A5048107114 @default.
- W4295956599 hasAuthorship W4295956599A5062727949 @default.
- W4295956599 hasAuthorship W4295956599A5075174479 @default.
- W4295956599 hasConcept C107365816 @default.
- W4295956599 hasConcept C114793014 @default.
- W4295956599 hasConcept C115961682 @default.
- W4295956599 hasConcept C121332964 @default.
- W4295956599 hasConcept C127313418 @default.
- W4295956599 hasConcept C13280743 @default.
- W4295956599 hasConcept C137800194 @default.
- W4295956599 hasConcept C154945302 @default.
- W4295956599 hasConcept C159985019 @default.
- W4295956599 hasConcept C161840515 @default.
- W4295956599 hasConcept C192562407 @default.
- W4295956599 hasConcept C205649164 @default.
- W4295956599 hasConcept C2524010 @default.
- W4295956599 hasConcept C2776799497 @default.
- W4295956599 hasConcept C33923547 @default.
- W4295956599 hasConcept C41008148 @default.
- W4295956599 hasConcept C58640448 @default.
- W4295956599 hasConcept C62520636 @default.
- W4295956599 hasConcept C62649853 @default.
- W4295956599 hasConcept C71039073 @default.
- W4295956599 hasConceptScore W4295956599C107365816 @default.
- W4295956599 hasConceptScore W4295956599C114793014 @default.
- W4295956599 hasConceptScore W4295956599C115961682 @default.
- W4295956599 hasConceptScore W4295956599C121332964 @default.
- W4295956599 hasConceptScore W4295956599C127313418 @default.
- W4295956599 hasConceptScore W4295956599C13280743 @default.
- W4295956599 hasConceptScore W4295956599C137800194 @default.
- W4295956599 hasConceptScore W4295956599C154945302 @default.
- W4295956599 hasConceptScore W4295956599C159985019 @default.