Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295956768> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4295956768 endingPage "111935" @default.
- W4295956768 startingPage "111935" @default.
- W4295956768 abstract "• A new CNN-based model enhancement method for bearing fault diagnosis: CA-MCNN. • A new multi-scale extraction method based on pooling layers. • Adaptive parallel feature fusion mechanism based on 1-D convolution. In recent years, deep learning has achieved great success in bearing fault diagnosis due to its robust feature learning capabilities. However, in the actual industry, the diagnostic accuracy would be degraded under varying operation conditions or in noisy environments. To enhance the diagnostic performance in industrial applications, a Multi-scale Convolutional Neural Network with Channel Attention (CA-MCNN) is proposed in this paper. In CA-MCNN, the maximum pooling and average pooling layers are used to extract the multi-scale information of the bearing signals, which increases the dimensions of input. The channel attention mechanism is introduced to increase the convolutional layer feature learning ability by adaptively scoring and assigning weights to the learned features. Moreover, the feature parallel fusion mechanism based on 1-D convolution is applied to capture complementary multi-scale information and reduce network complexity. The performance of CA-MCNN is compared with other fault diagnosis models, and experimental results verify that the CA-MCNN achieves the highest diagnosis accuracy under noisy environments and varying working speeds." @default.
- W4295956768 created "2022-09-16" @default.
- W4295956768 creator A5017965717 @default.
- W4295956768 creator A5037267509 @default.
- W4295956768 creator A5048984221 @default.
- W4295956768 creator A5067546362 @default.
- W4295956768 creator A5070734488 @default.
- W4295956768 date "2022-11-01" @default.
- W4295956768 modified "2023-10-11" @default.
- W4295956768 title "Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis" @default.
- W4295956768 cites W1498436455 @default.
- W4295956768 cites W1932847118 @default.
- W4295956768 cites W1973445088 @default.
- W4295956768 cites W2794869810 @default.
- W4295956768 cites W2808496542 @default.
- W4295956768 cites W2810292802 @default.
- W4295956768 cites W2931331224 @default.
- W4295956768 cites W2947583263 @default.
- W4295956768 cites W2969596529 @default.
- W4295956768 cites W3006342871 @default.
- W4295956768 cites W3008309516 @default.
- W4295956768 cites W3041218800 @default.
- W4295956768 cites W3090682168 @default.
- W4295956768 cites W3094105523 @default.
- W4295956768 cites W3100087300 @default.
- W4295956768 cites W3159288184 @default.
- W4295956768 doi "https://doi.org/10.1016/j.measurement.2022.111935" @default.
- W4295956768 hasPublicationYear "2022" @default.
- W4295956768 type Work @default.
- W4295956768 citedByCount "21" @default.
- W4295956768 countsByYear W42959567682023 @default.
- W4295956768 crossrefType "journal-article" @default.
- W4295956768 hasAuthorship W4295956768A5017965717 @default.
- W4295956768 hasAuthorship W4295956768A5037267509 @default.
- W4295956768 hasAuthorship W4295956768A5048984221 @default.
- W4295956768 hasAuthorship W4295956768A5067546362 @default.
- W4295956768 hasAuthorship W4295956768A5070734488 @default.
- W4295956768 hasConcept C121332964 @default.
- W4295956768 hasConcept C127162648 @default.
- W4295956768 hasConcept C127313418 @default.
- W4295956768 hasConcept C154945302 @default.
- W4295956768 hasConcept C165205528 @default.
- W4295956768 hasConcept C175551986 @default.
- W4295956768 hasConcept C199978012 @default.
- W4295956768 hasConcept C205649164 @default.
- W4295956768 hasConcept C2778755073 @default.
- W4295956768 hasConcept C31258907 @default.
- W4295956768 hasConcept C41008148 @default.
- W4295956768 hasConcept C58640448 @default.
- W4295956768 hasConcept C62520636 @default.
- W4295956768 hasConcept C89611455 @default.
- W4295956768 hasConceptScore W4295956768C121332964 @default.
- W4295956768 hasConceptScore W4295956768C127162648 @default.
- W4295956768 hasConceptScore W4295956768C127313418 @default.
- W4295956768 hasConceptScore W4295956768C154945302 @default.
- W4295956768 hasConceptScore W4295956768C165205528 @default.
- W4295956768 hasConceptScore W4295956768C175551986 @default.
- W4295956768 hasConceptScore W4295956768C199978012 @default.
- W4295956768 hasConceptScore W4295956768C205649164 @default.
- W4295956768 hasConceptScore W4295956768C2778755073 @default.
- W4295956768 hasConceptScore W4295956768C31258907 @default.
- W4295956768 hasConceptScore W4295956768C41008148 @default.
- W4295956768 hasConceptScore W4295956768C58640448 @default.
- W4295956768 hasConceptScore W4295956768C62520636 @default.
- W4295956768 hasConceptScore W4295956768C89611455 @default.
- W4295956768 hasLocation W42959567681 @default.
- W4295956768 hasOpenAccess W4295956768 @default.
- W4295956768 hasPrimaryLocation W42959567681 @default.
- W4295956768 hasRelatedWork W2065631063 @default.
- W4295956768 hasRelatedWork W2351803610 @default.
- W4295956768 hasRelatedWork W2356335324 @default.
- W4295956768 hasRelatedWork W2359137991 @default.
- W4295956768 hasRelatedWork W2363430204 @default.
- W4295956768 hasRelatedWork W2378667342 @default.
- W4295956768 hasRelatedWork W2575656761 @default.
- W4295956768 hasRelatedWork W3020380079 @default.
- W4295956768 hasRelatedWork W3133754894 @default.
- W4295956768 hasRelatedWork W766580792 @default.
- W4295956768 hasVolume "203" @default.
- W4295956768 isParatext "false" @default.
- W4295956768 isRetracted "false" @default.
- W4295956768 workType "article" @default.