Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295963279> ?p ?o ?g. }
- W4295963279 endingPage "118827" @default.
- W4295963279 startingPage "118827" @default.
- W4295963279 abstract "The multi-objective gorilla troops optimizer (MOGTO) is a new version of the gorilla troops optimizer (GTO) proposed in this paper to address multi-objective optimization issues. The Pareto optimum solutions acquired by the GTO are saved in an external archive. In the multi-objective search region, the archive was used to mimic the gorilla groups’ collective behavior. The suggested approach is evaluated statistically and qualitatively in solving various multi-objective issues using the congress on evolutionary computation (CEC) 2020 test bed. In large-scale wireless sensor networks, the proposed algorithm is also utilized to discover the minimal number of sink nodes with the lowest localization error, which will cap the whole network and increase the network lifespan. Meanwhile, the multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm version 2 (NSGA-II), multi-objective grey wolf optimizer (MOGWO), multi-objective whale optimization algorithm (MOWOA), multi-objective sine-cosine algorithm (MOSCA), multi-objective slime mould algorithm (MOSMA), multi-objective particle swarm optimization with ring topology and special crowding distance (MO_Ring_PSO_SCD), hybrid NSGAII-MOPSO, multi-objective evolutionary algorithm based on decomposition (MOEA/D), and improved multi-objective manta ray foraging optimization (IMOMRFO) are the ten familiar and strong optimization models, which are compared with the proposed algorithm. Simulation results in CEC’2020 test functions indicated that the proposed MOGTO can provide remarkable results than other optimization models in terms of Pareto set proximity (PSP), inverted generational distance in decision space (IGDX), and hyper volume (HV) indicators. Additionally, simulation results in large-scale wireless sensor networks show that the proposed algorithm can discover the smallest number of sink nodes and diminish the network’s energy usage. • An efficient MOGTO algorithm is proposed based on NDS and CD techniques. • CEC 2020 test suite is utilized for verification of MOGTO performance. • MOGTO is proposed for minimizing energy consumption of LSWSNs. • MOGTO is analyzed using various analysis metrics. • The performance of the MOGTO is better than other competitor algorithms." @default.
- W4295963279 created "2022-09-16" @default.
- W4295963279 creator A5025816298 @default.
- W4295963279 creator A5045653825 @default.
- W4295963279 creator A5056436780 @default.
- W4295963279 date "2023-02-01" @default.
- W4295963279 modified "2023-09-29" @default.
- W4295963279 title "An efficient multi-objective gorilla troops optimizer for minimizing energy consumption of large-scale wireless sensor networks" @default.
- W4295963279 cites W1764551496 @default.
- W4295963279 cites W1966253115 @default.
- W4295963279 cites W1980432290 @default.
- W4295963279 cites W1993377828 @default.
- W4295963279 cites W1997188340 @default.
- W4295963279 cites W2024008934 @default.
- W4295963279 cites W2024352272 @default.
- W4295963279 cites W2037592285 @default.
- W4295963279 cites W2092399973 @default.
- W4295963279 cites W2093056188 @default.
- W4295963279 cites W2106334424 @default.
- W4295963279 cites W2116961716 @default.
- W4295963279 cites W2118044993 @default.
- W4295963279 cites W2119877321 @default.
- W4295963279 cites W2122683728 @default.
- W4295963279 cites W2123541507 @default.
- W4295963279 cites W2125899728 @default.
- W4295963279 cites W2126105956 @default.
- W4295963279 cites W2143381319 @default.
- W4295963279 cites W2144445102 @default.
- W4295963279 cites W2151554678 @default.
- W4295963279 cites W2165171393 @default.
- W4295963279 cites W2167580870 @default.
- W4295963279 cites W2168452204 @default.
- W4295963279 cites W2174096823 @default.
- W4295963279 cites W2481453975 @default.
- W4295963279 cites W2548174390 @default.
- W4295963279 cites W2569407766 @default.
- W4295963279 cites W2626235566 @default.
- W4295963279 cites W2735292160 @default.
- W4295963279 cites W2738900493 @default.
- W4295963279 cites W2742961367 @default.
- W4295963279 cites W2758008099 @default.
- W4295963279 cites W2766078257 @default.
- W4295963279 cites W2807637204 @default.
- W4295963279 cites W2905343336 @default.
- W4295963279 cites W2933307200 @default.
- W4295963279 cites W2998030991 @default.
- W4295963279 cites W3002229880 @default.
- W4295963279 cites W3006770096 @default.
- W4295963279 cites W3013508104 @default.
- W4295963279 cites W3092652491 @default.
- W4295963279 cites W3115290671 @default.
- W4295963279 cites W3154944814 @default.
- W4295963279 cites W3185076117 @default.
- W4295963279 cites W3199464050 @default.
- W4295963279 cites W4200369886 @default.
- W4295963279 doi "https://doi.org/10.1016/j.eswa.2022.118827" @default.
- W4295963279 hasPublicationYear "2023" @default.
- W4295963279 type Work @default.
- W4295963279 citedByCount "9" @default.
- W4295963279 countsByYear W42959632792023 @default.
- W4295963279 crossrefType "journal-article" @default.
- W4295963279 hasAuthorship W4295963279A5025816298 @default.
- W4295963279 hasAuthorship W4295963279A5045653825 @default.
- W4295963279 hasAuthorship W4295963279A5056436780 @default.
- W4295963279 hasConcept C119599485 @default.
- W4295963279 hasConcept C120314980 @default.
- W4295963279 hasConcept C126255220 @default.
- W4295963279 hasConcept C127413603 @default.
- W4295963279 hasConcept C144024400 @default.
- W4295963279 hasConcept C151730666 @default.
- W4295963279 hasConcept C205649164 @default.
- W4295963279 hasConcept C24590314 @default.
- W4295963279 hasConcept C2777477413 @default.
- W4295963279 hasConcept C2778755073 @default.
- W4295963279 hasConcept C2780165032 @default.
- W4295963279 hasConcept C30772137 @default.
- W4295963279 hasConcept C31258907 @default.
- W4295963279 hasConcept C33923547 @default.
- W4295963279 hasConcept C36289849 @default.
- W4295963279 hasConcept C41008148 @default.
- W4295963279 hasConcept C555944384 @default.
- W4295963279 hasConcept C58640448 @default.
- W4295963279 hasConcept C76155785 @default.
- W4295963279 hasConcept C79403827 @default.
- W4295963279 hasConcept C86803240 @default.
- W4295963279 hasConceptScore W4295963279C119599485 @default.
- W4295963279 hasConceptScore W4295963279C120314980 @default.
- W4295963279 hasConceptScore W4295963279C126255220 @default.
- W4295963279 hasConceptScore W4295963279C127413603 @default.
- W4295963279 hasConceptScore W4295963279C144024400 @default.
- W4295963279 hasConceptScore W4295963279C151730666 @default.
- W4295963279 hasConceptScore W4295963279C205649164 @default.
- W4295963279 hasConceptScore W4295963279C24590314 @default.
- W4295963279 hasConceptScore W4295963279C2777477413 @default.
- W4295963279 hasConceptScore W4295963279C2778755073 @default.
- W4295963279 hasConceptScore W4295963279C2780165032 @default.
- W4295963279 hasConceptScore W4295963279C30772137 @default.
- W4295963279 hasConceptScore W4295963279C31258907 @default.