Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296001792> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4296001792 endingPage "10" @default.
- W4296001792 startingPage "1" @default.
- W4296001792 abstract "Chemical process design is something that researchers must do before conducting chemical reaction experiments, and this step is crucial for the entire chemical production. Because even if the relevant basic information of the institute is obtained, most of the above data have not been verified by experiments, and researchers need to confirm through experiments. In addition, because the market demand for chemical process products is very large, the types of chemical substances are increasing, chemical equipment and instruments are becoming more and more complex, and these require researchers to design and study in advance. This ensures the smooth production of products and the safety of researchers. However, the expansion of the equipment scale and the complexity of the equipment make it more and more difficult to design the chemical process flow. There are many influencing factors and levels to be considered when designing the process, and the data is also very difficult to predict and classify. In order to solve these problems, this study discussed the countermeasures to deal with chemical process flow design in depth. Using the method of deep learning, the problem of chemical process design was analyzed, and the performance of the method was experimentally studied. The results show that the chemical process flow based on deep learning is better than other process designs, and its accuracy rate is higher than 94% in 10 experiments, which is higher than the other three methods. It can be seen that this chemical process method can meet the needs of the current chemical process, and the product quality and work efficiency are greatly improved." @default.
- W4296001792 created "2022-09-16" @default.
- W4296001792 creator A5043995646 @default.
- W4296001792 date "2022-09-07" @default.
- W4296001792 modified "2023-10-18" @default.
- W4296001792 title "Design and Deconstruction of Chemical Process Flow Based on Deep Learning" @default.
- W4296001792 cites W2968085363 @default.
- W4296001792 cites W2987776819 @default.
- W4296001792 cites W3004457904 @default.
- W4296001792 cites W3005467245 @default.
- W4296001792 cites W3011910285 @default.
- W4296001792 cites W3106637991 @default.
- W4296001792 cites W3118867717 @default.
- W4296001792 cites W3130206441 @default.
- W4296001792 cites W3154326262 @default.
- W4296001792 cites W3165667213 @default.
- W4296001792 cites W3173203574 @default.
- W4296001792 cites W3185508612 @default.
- W4296001792 cites W3192730030 @default.
- W4296001792 cites W3194352261 @default.
- W4296001792 cites W3201102217 @default.
- W4296001792 cites W3201979537 @default.
- W4296001792 cites W3203162515 @default.
- W4296001792 cites W3203842852 @default.
- W4296001792 cites W3204898980 @default.
- W4296001792 cites W3206729672 @default.
- W4296001792 cites W3208292737 @default.
- W4296001792 cites W3208885834 @default.
- W4296001792 cites W4206078786 @default.
- W4296001792 cites W4206357785 @default.
- W4296001792 cites W4220680219 @default.
- W4296001792 cites W4220745050 @default.
- W4296001792 doi "https://doi.org/10.1155/2022/1410819" @default.
- W4296001792 hasPublicationYear "2022" @default.
- W4296001792 type Work @default.
- W4296001792 citedByCount "0" @default.
- W4296001792 crossrefType "journal-article" @default.
- W4296001792 hasAuthorship W4296001792A5043995646 @default.
- W4296001792 hasBestOaLocation W42960017921 @default.
- W4296001792 hasConcept C111919701 @default.
- W4296001792 hasConcept C12404463 @default.
- W4296001792 hasConcept C124223222 @default.
- W4296001792 hasConcept C127413603 @default.
- W4296001792 hasConcept C178790620 @default.
- W4296001792 hasConcept C183696295 @default.
- W4296001792 hasConcept C185592680 @default.
- W4296001792 hasConcept C21880701 @default.
- W4296001792 hasConcept C2524010 @default.
- W4296001792 hasConcept C2780465076 @default.
- W4296001792 hasConcept C2992453961 @default.
- W4296001792 hasConcept C33923547 @default.
- W4296001792 hasConcept C38349280 @default.
- W4296001792 hasConcept C41008148 @default.
- W4296001792 hasConcept C42360764 @default.
- W4296001792 hasConcept C54725748 @default.
- W4296001792 hasConcept C55396564 @default.
- W4296001792 hasConcept C98045186 @default.
- W4296001792 hasConceptScore W4296001792C111919701 @default.
- W4296001792 hasConceptScore W4296001792C12404463 @default.
- W4296001792 hasConceptScore W4296001792C124223222 @default.
- W4296001792 hasConceptScore W4296001792C127413603 @default.
- W4296001792 hasConceptScore W4296001792C178790620 @default.
- W4296001792 hasConceptScore W4296001792C183696295 @default.
- W4296001792 hasConceptScore W4296001792C185592680 @default.
- W4296001792 hasConceptScore W4296001792C21880701 @default.
- W4296001792 hasConceptScore W4296001792C2524010 @default.
- W4296001792 hasConceptScore W4296001792C2780465076 @default.
- W4296001792 hasConceptScore W4296001792C2992453961 @default.
- W4296001792 hasConceptScore W4296001792C33923547 @default.
- W4296001792 hasConceptScore W4296001792C38349280 @default.
- W4296001792 hasConceptScore W4296001792C41008148 @default.
- W4296001792 hasConceptScore W4296001792C42360764 @default.
- W4296001792 hasConceptScore W4296001792C54725748 @default.
- W4296001792 hasConceptScore W4296001792C55396564 @default.
- W4296001792 hasConceptScore W4296001792C98045186 @default.
- W4296001792 hasLocation W42960017921 @default.
- W4296001792 hasOpenAccess W4296001792 @default.
- W4296001792 hasPrimaryLocation W42960017921 @default.
- W4296001792 hasRelatedWork W1864000601 @default.
- W4296001792 hasRelatedWork W2018178344 @default.
- W4296001792 hasRelatedWork W2161559720 @default.
- W4296001792 hasRelatedWork W2181419075 @default.
- W4296001792 hasRelatedWork W2359795906 @default.
- W4296001792 hasRelatedWork W2796280161 @default.
- W4296001792 hasRelatedWork W3140048920 @default.
- W4296001792 hasRelatedWork W3193643586 @default.
- W4296001792 hasRelatedWork W4285796576 @default.
- W4296001792 hasRelatedWork W4296001792 @default.
- W4296001792 hasVolume "2022" @default.
- W4296001792 isParatext "false" @default.
- W4296001792 isRetracted "false" @default.
- W4296001792 workType "article" @default.