Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296012105> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4296012105 endingPage "543" @default.
- W4296012105 startingPage "529" @default.
- W4296012105 abstract "In order to better understand conditions that lead to methane explosions in underground coal mines, we apply machine learning to data collected in an industrial scale research project carried out at the University of Newcastle, Australia, 2014–2018 (VAM Abatement Safety Project). We present a comparison of five different methods (Decision Tree, Random Forest, Naïve Bayes, AdaBoostM1, and SVM with SMO) to classify the maximum pressure and maximum flame velocity in order to predict detonation and inform the design of capture ducts. All methods are evaluated with a tenfold cross validation technique. We found that tree-based classification methods provide the most accurate prediction of dangerous pressure and supersonic velocity." @default.
- W4296012105 created "2022-09-17" @default.
- W4296012105 creator A5030470010 @default.
- W4296012105 creator A5048391770 @default.
- W4296012105 creator A5055670893 @default.
- W4296012105 creator A5081115515 @default.
- W4296012105 date "2022-01-01" @default.
- W4296012105 modified "2023-09-26" @default.
- W4296012105 title "Predicting Deflagration and Detonation in Detonation Tube" @default.
- W4296012105 cites W1566376227 @default.
- W4296012105 cites W1997907934 @default.
- W4296012105 cites W2006710084 @default.
- W4296012105 cites W2024759280 @default.
- W4296012105 cites W2033045942 @default.
- W4296012105 cites W2045819586 @default.
- W4296012105 cites W2055693399 @default.
- W4296012105 cites W2128312705 @default.
- W4296012105 cites W2293649496 @default.
- W4296012105 cites W2604910173 @default.
- W4296012105 cites W2935986563 @default.
- W4296012105 cites W2972119637 @default.
- W4296012105 cites W2979443209 @default.
- W4296012105 cites W2997310337 @default.
- W4296012105 cites W3000277134 @default.
- W4296012105 cites W3022616139 @default.
- W4296012105 cites W3023865027 @default.
- W4296012105 cites W3041404470 @default.
- W4296012105 cites W3075219706 @default.
- W4296012105 cites W3088692287 @default.
- W4296012105 cites W3114571534 @default.
- W4296012105 cites W3114900201 @default.
- W4296012105 cites W3121068325 @default.
- W4296012105 cites W4231096133 @default.
- W4296012105 doi "https://doi.org/10.1007/978-981-19-4831-2_43" @default.
- W4296012105 hasPublicationYear "2022" @default.
- W4296012105 type Work @default.
- W4296012105 citedByCount "0" @default.
- W4296012105 crossrefType "book-chapter" @default.
- W4296012105 hasAuthorship W4296012105A5030470010 @default.
- W4296012105 hasAuthorship W4296012105A5048391770 @default.
- W4296012105 hasAuthorship W4296012105A5055670893 @default.
- W4296012105 hasAuthorship W4296012105A5081115515 @default.
- W4296012105 hasConcept C10500322 @default.
- W4296012105 hasConcept C119857082 @default.
- W4296012105 hasConcept C12267149 @default.
- W4296012105 hasConcept C127413603 @default.
- W4296012105 hasConcept C146978453 @default.
- W4296012105 hasConcept C154238967 @default.
- W4296012105 hasConcept C178790620 @default.
- W4296012105 hasConcept C185592680 @default.
- W4296012105 hasConcept C203397868 @default.
- W4296012105 hasConcept C205991772 @default.
- W4296012105 hasConcept C39432304 @default.
- W4296012105 hasConcept C41008148 @default.
- W4296012105 hasConcept C47396930 @default.
- W4296012105 hasConcept C52001869 @default.
- W4296012105 hasConcept C84525736 @default.
- W4296012105 hasConceptScore W4296012105C10500322 @default.
- W4296012105 hasConceptScore W4296012105C119857082 @default.
- W4296012105 hasConceptScore W4296012105C12267149 @default.
- W4296012105 hasConceptScore W4296012105C127413603 @default.
- W4296012105 hasConceptScore W4296012105C146978453 @default.
- W4296012105 hasConceptScore W4296012105C154238967 @default.
- W4296012105 hasConceptScore W4296012105C178790620 @default.
- W4296012105 hasConceptScore W4296012105C185592680 @default.
- W4296012105 hasConceptScore W4296012105C203397868 @default.
- W4296012105 hasConceptScore W4296012105C205991772 @default.
- W4296012105 hasConceptScore W4296012105C39432304 @default.
- W4296012105 hasConceptScore W4296012105C41008148 @default.
- W4296012105 hasConceptScore W4296012105C47396930 @default.
- W4296012105 hasConceptScore W4296012105C52001869 @default.
- W4296012105 hasConceptScore W4296012105C84525736 @default.
- W4296012105 hasLocation W42960121051 @default.
- W4296012105 hasOpenAccess W4296012105 @default.
- W4296012105 hasPrimaryLocation W42960121051 @default.
- W4296012105 hasRelatedWork W2128936407 @default.
- W4296012105 hasRelatedWork W2253387980 @default.
- W4296012105 hasRelatedWork W2533976464 @default.
- W4296012105 hasRelatedWork W2545611210 @default.
- W4296012105 hasRelatedWork W2982401781 @default.
- W4296012105 hasRelatedWork W2982653661 @default.
- W4296012105 hasRelatedWork W3211634641 @default.
- W4296012105 hasRelatedWork W4309340238 @default.
- W4296012105 hasRelatedWork W4322723280 @default.
- W4296012105 hasRelatedWork W4365804164 @default.
- W4296012105 isParatext "false" @default.
- W4296012105 isRetracted "false" @default.
- W4296012105 workType "book-chapter" @default.