Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296020455> ?p ?o ?g. }
- W4296020455 abstract "As the cost of high-throughput genomic sequencing technology declines, its application in clinical research becomes increasingly popular. The collected datasets often contain tens or hundreds of thousands of biological features that need to be mined to extract meaningful information. One area of particular interest is discovering underlying causal mechanisms of disease outcomes. Over the past few decades, causal discovery algorithms have been developed and expanded to infer such relationships. However, these algorithms suffer from the curse of dimensionality and multicollinearity. A recently introduced, non-orthogonal, general empirical Bayes approach to matrix factorization has been demonstrated to successfully infer latent factors with interpretable structures from observed variables. We hypothesize that applying this strategy to causal discovery algorithms can solve both the high dimensionality and collinearity problems, inherent to most biomedical datasets. We evaluate this strategy on simulated data and apply it to two real-world datasets. In a breast cancer dataset, we identified important survival-associated latent factors and biologically meaningful enriched pathways within factors related to important clinical features. In a SARS-CoV-2 dataset, we were able to predict whether a patient (1) had Covid-19 and (2) would enter the ICU. Furthermore, we were able to associate factors with known Covid-19 related biological pathways." @default.
- W4296020455 created "2022-09-17" @default.
- W4296020455 creator A5001724465 @default.
- W4296020455 creator A5011545630 @default.
- W4296020455 creator A5025730204 @default.
- W4296020455 creator A5048764869 @default.
- W4296020455 creator A5072318095 @default.
- W4296020455 date "2022-09-13" @default.
- W4296020455 modified "2023-10-14" @default.
- W4296020455 title "Causal discovery in high-dimensional, multicollinear datasets" @default.
- W4296020455 cites W1593060747 @default.
- W4296020455 cites W2005895632 @default.
- W4296020455 cites W2006617902 @default.
- W4296020455 cites W2021556180 @default.
- W4296020455 cites W2028670536 @default.
- W4296020455 cites W2030748132 @default.
- W4296020455 cites W2039787717 @default.
- W4296020455 cites W2040854171 @default.
- W4296020455 cites W2045688706 @default.
- W4296020455 cites W2053609837 @default.
- W4296020455 cites W2073307618 @default.
- W4296020455 cites W2076513103 @default.
- W4296020455 cites W2078202582 @default.
- W4296020455 cites W2097360283 @default.
- W4296020455 cites W2098222328 @default.
- W4296020455 cites W2103017472 @default.
- W4296020455 cites W2112814716 @default.
- W4296020455 cites W2121273346 @default.
- W4296020455 cites W2125631472 @default.
- W4296020455 cites W2126991164 @default.
- W4296020455 cites W2130410032 @default.
- W4296020455 cites W2134240743 @default.
- W4296020455 cites W2139865581 @default.
- W4296020455 cites W2163702333 @default.
- W4296020455 cites W2180374961 @default.
- W4296020455 cites W2383534773 @default.
- W4296020455 cites W2417388301 @default.
- W4296020455 cites W2468594717 @default.
- W4296020455 cites W2606811296 @default.
- W4296020455 cites W2646400850 @default.
- W4296020455 cites W2778039281 @default.
- W4296020455 cites W2781935813 @default.
- W4296020455 cites W2791842758 @default.
- W4296020455 cites W2890292344 @default.
- W4296020455 cites W2914129560 @default.
- W4296020455 cites W2921157435 @default.
- W4296020455 cites W2922894427 @default.
- W4296020455 cites W2924602776 @default.
- W4296020455 cites W2928646382 @default.
- W4296020455 cites W2948579453 @default.
- W4296020455 cites W2951029718 @default.
- W4296020455 cites W2971016165 @default.
- W4296020455 cites W2989920848 @default.
- W4296020455 cites W2989942465 @default.
- W4296020455 cites W2996937995 @default.
- W4296020455 cites W2999511270 @default.
- W4296020455 cites W2999883126 @default.
- W4296020455 cites W3013131022 @default.
- W4296020455 cites W3027038786 @default.
- W4296020455 cites W3091839106 @default.
- W4296020455 cites W3130824274 @default.
- W4296020455 cites W3147894994 @default.
- W4296020455 cites W3175752499 @default.
- W4296020455 cites W3176910263 @default.
- W4296020455 cites W3182310754 @default.
- W4296020455 cites W3192551599 @default.
- W4296020455 cites W4220737595 @default.
- W4296020455 cites W4293241248 @default.
- W4296020455 cites W4293355750 @default.
- W4296020455 cites W4294541781 @default.
- W4296020455 cites W4295887915 @default.
- W4296020455 doi "https://doi.org/10.3389/fepid.2022.899655" @default.
- W4296020455 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36778756" @default.
- W4296020455 hasPublicationYear "2022" @default.
- W4296020455 type Work @default.
- W4296020455 citedByCount "1" @default.
- W4296020455 countsByYear W42960204552023 @default.
- W4296020455 crossrefType "journal-article" @default.
- W4296020455 hasAuthorship W4296020455A5001724465 @default.
- W4296020455 hasAuthorship W4296020455A5011545630 @default.
- W4296020455 hasAuthorship W4296020455A5025730204 @default.
- W4296020455 hasAuthorship W4296020455A5048764869 @default.
- W4296020455 hasAuthorship W4296020455A5072318095 @default.
- W4296020455 hasBestOaLocation W42960204551 @default.
- W4296020455 hasConcept C105795698 @default.
- W4296020455 hasConcept C106192678 @default.
- W4296020455 hasConcept C107673813 @default.
- W4296020455 hasConcept C111030470 @default.
- W4296020455 hasConcept C119857082 @default.
- W4296020455 hasConcept C124101348 @default.
- W4296020455 hasConcept C154945302 @default.
- W4296020455 hasConcept C207201462 @default.
- W4296020455 hasConcept C33923547 @default.
- W4296020455 hasConcept C41008148 @default.
- W4296020455 hasConceptScore W4296020455C105795698 @default.
- W4296020455 hasConceptScore W4296020455C106192678 @default.
- W4296020455 hasConceptScore W4296020455C107673813 @default.
- W4296020455 hasConceptScore W4296020455C111030470 @default.
- W4296020455 hasConceptScore W4296020455C119857082 @default.
- W4296020455 hasConceptScore W4296020455C124101348 @default.