Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296021746> ?p ?o ?g. }
- W4296021746 endingPage "191" @default.
- W4296021746 startingPage "175" @default.
- W4296021746 abstract "Abstract The segmentation of Organs At Risk (OAR) in Computed Tomography (CT) images is an essential part of the planning phase of radiation treatment to avoid the adverse effects of cancer radiotherapy treatment. Accurate segmentation is a tedious task in the head and neck region due to a large number of small and sensitive organs and the low contrast of CT images. Deep learning‐based automatic contouring algorithms can ease this task even when the organs have irregular shapes and size variations. This paper proposes a fully automatic deep learning‐based self‐supervised 3D Residual UNet architecture with CBAM(Convolution Block Attention Mechanism) for the organ segmentation in head and neck CT images. The Model Genesis structure and image context restoration techniques are used for self‐supervision, which can help the network learn image features from unlabeled data, hence solving the annotated medical data scarcity problem in deep networks. A new loss function is applied for training by integrating Focal loss, Tversky loss, and Cross‐entropy loss. The proposed model outperforms the state‐of‐the‐art methods in terms of dice similarity coefficient in segmenting the organs. Our self‐supervised model could achieve a 4% increase in the dice score of Chiasm, which is a small organ that is present only in a very few CT slices. The proposed model exhibited better accuracy for 5 out of 7 OARs than the recent state‐of‐the‐art models. The proposed model could simultaneously segment all seven organs in an average time of 0.02 s. The source code of this work is made available at https://github.com/seeniafrancis/SABOSNet ." @default.
- W4296021746 created "2022-09-17" @default.
- W4296021746 creator A5007207103 @default.
- W4296021746 creator A5015025002 @default.
- W4296021746 creator A5031448764 @default.
- W4296021746 creator A5033728258 @default.
- W4296021746 creator A5056264561 @default.
- W4296021746 creator A5074619036 @default.
- W4296021746 date "2022-09-13" @default.
- W4296021746 modified "2023-10-16" @default.
- W4296021746 title "<scp>SABOS‐Net</scp> : Self‐supervised attention based network for automatic organ segmentation of head and neck <scp>CT</scp> images" @default.
- W4296021746 cites W1909740415 @default.
- W4296021746 cites W2007341632 @default.
- W4296021746 cites W2083927153 @default.
- W4296021746 cites W2304189599 @default.
- W4296021746 cites W2520722352 @default.
- W4296021746 cites W2560725027 @default.
- W4296021746 cites W2593013519 @default.
- W4296021746 cites W2613456556 @default.
- W4296021746 cites W2773960327 @default.
- W4296021746 cites W2782349608 @default.
- W4296021746 cites W2792155504 @default.
- W4296021746 cites W2792815307 @default.
- W4296021746 cites W2888667538 @default.
- W4296021746 cites W2900237898 @default.
- W4296021746 cites W2914733968 @default.
- W4296021746 cites W2923997689 @default.
- W4296021746 cites W2925142108 @default.
- W4296021746 cites W2940098913 @default.
- W4296021746 cites W2944958482 @default.
- W4296021746 cites W2964227007 @default.
- W4296021746 cites W2964744899 @default.
- W4296021746 cites W2965682404 @default.
- W4296021746 cites W2978708129 @default.
- W4296021746 cites W2982147221 @default.
- W4296021746 cites W2990508594 @default.
- W4296021746 cites W2995821626 @default.
- W4296021746 cites W3006905011 @default.
- W4296021746 cites W3007268491 @default.
- W4296021746 cites W3008512199 @default.
- W4296021746 cites W3016836174 @default.
- W4296021746 cites W3024640380 @default.
- W4296021746 cites W3043756267 @default.
- W4296021746 cites W3087981926 @default.
- W4296021746 cites W3092530369 @default.
- W4296021746 cites W3092789410 @default.
- W4296021746 cites W3108981504 @default.
- W4296021746 cites W3159781041 @default.
- W4296021746 cites W3180629942 @default.
- W4296021746 cites W3190516691 @default.
- W4296021746 cites W3206370559 @default.
- W4296021746 cites W3208374152 @default.
- W4296021746 cites W4206843457 @default.
- W4296021746 cites W4210278342 @default.
- W4296021746 cites W4296580612 @default.
- W4296021746 doi "https://doi.org/10.1002/ima.22802" @default.
- W4296021746 hasPublicationYear "2022" @default.
- W4296021746 type Work @default.
- W4296021746 citedByCount "0" @default.
- W4296021746 crossrefType "journal-article" @default.
- W4296021746 hasAuthorship W4296021746A5007207103 @default.
- W4296021746 hasAuthorship W4296021746A5015025002 @default.
- W4296021746 hasAuthorship W4296021746A5031448764 @default.
- W4296021746 hasAuthorship W4296021746A5033728258 @default.
- W4296021746 hasAuthorship W4296021746A5056264561 @default.
- W4296021746 hasAuthorship W4296021746A5074619036 @default.
- W4296021746 hasConcept C108583219 @default.
- W4296021746 hasConcept C121684516 @default.
- W4296021746 hasConcept C124504099 @default.
- W4296021746 hasConcept C151730666 @default.
- W4296021746 hasConcept C153180895 @default.
- W4296021746 hasConcept C154945302 @default.
- W4296021746 hasConcept C163892561 @default.
- W4296021746 hasConcept C167981619 @default.
- W4296021746 hasConcept C22029948 @default.
- W4296021746 hasConcept C2524010 @default.
- W4296021746 hasConcept C2779104521 @default.
- W4296021746 hasConcept C2779343474 @default.
- W4296021746 hasConcept C33923547 @default.
- W4296021746 hasConcept C41008148 @default.
- W4296021746 hasConcept C86803240 @default.
- W4296021746 hasConcept C89600930 @default.
- W4296021746 hasConceptScore W4296021746C108583219 @default.
- W4296021746 hasConceptScore W4296021746C121684516 @default.
- W4296021746 hasConceptScore W4296021746C124504099 @default.
- W4296021746 hasConceptScore W4296021746C151730666 @default.
- W4296021746 hasConceptScore W4296021746C153180895 @default.
- W4296021746 hasConceptScore W4296021746C154945302 @default.
- W4296021746 hasConceptScore W4296021746C163892561 @default.
- W4296021746 hasConceptScore W4296021746C167981619 @default.
- W4296021746 hasConceptScore W4296021746C22029948 @default.
- W4296021746 hasConceptScore W4296021746C2524010 @default.
- W4296021746 hasConceptScore W4296021746C2779104521 @default.
- W4296021746 hasConceptScore W4296021746C2779343474 @default.
- W4296021746 hasConceptScore W4296021746C33923547 @default.
- W4296021746 hasConceptScore W4296021746C41008148 @default.
- W4296021746 hasConceptScore W4296021746C86803240 @default.
- W4296021746 hasConceptScore W4296021746C89600930 @default.