Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296023635> ?p ?o ?g. }
- W4296023635 abstract "Abstract As an effective graphical representation method for 1D sequence (e.g., text), Chaos Game Representation (CGR) has been frequently combined with deep learning (DL) for biological analysis. In this study, we developed a unique approach to encode peptide/protein sequences into CGR images for classification. To this end, we designed a novel energy function and enhanced the encoder quality by constructing a Supervised Autoencoders (SAE) neural network. CGR was used to represent the amino acid sequences and such representation was optimized based on the latent variables with SAE. To assess the effectiveness of our new representation scheme, we further employed convolutional neural network (CNN) to build models to study hemolytic/non-hemolytic peptides and the susceptibility/resistance of HIV protease mutants to approved drugs. Comparisons were also conducted with other published methods, and our approach demonstrated superior performance. Supplementary information available online" @default.
- W4296023635 created "2022-09-17" @default.
- W4296023635 creator A5001492101 @default.
- W4296023635 creator A5025593348 @default.
- W4296023635 creator A5062282859 @default.
- W4296023635 creator A5073374086 @default.
- W4296023635 date "2022-09-13" @default.
- W4296023635 modified "2023-10-16" @default.
- W4296023635 title "Sequence-based Optimized Chaos Game Representation and Deep Learning for Peptide/Protein Classification" @default.
- W4296023635 cites W1992450378 @default.
- W4296023635 cites W1997844736 @default.
- W4296023635 cites W2025843498 @default.
- W4296023635 cites W2035210758 @default.
- W4296023635 cites W2050895876 @default.
- W4296023635 cites W2072413963 @default.
- W4296023635 cites W2072822306 @default.
- W4296023635 cites W2088877201 @default.
- W4296023635 cites W2089783896 @default.
- W4296023635 cites W2094930385 @default.
- W4296023635 cites W2101005439 @default.
- W4296023635 cites W2110887002 @default.
- W4296023635 cites W2118943119 @default.
- W4296023635 cites W2128084817 @default.
- W4296023635 cites W2128685318 @default.
- W4296023635 cites W2144413761 @default.
- W4296023635 cites W2280039593 @default.
- W4296023635 cites W2295107390 @default.
- W4296023635 cites W2322844633 @default.
- W4296023635 cites W2331050942 @default.
- W4296023635 cites W2724823461 @default.
- W4296023635 cites W2895742595 @default.
- W4296023635 cites W2950270741 @default.
- W4296023635 cites W2956606327 @default.
- W4296023635 cites W2995361046 @default.
- W4296023635 cites W2996266725 @default.
- W4296023635 cites W3091899249 @default.
- W4296023635 cites W3127297964 @default.
- W4296023635 cites W3132323068 @default.
- W4296023635 cites W3177828909 @default.
- W4296023635 cites W3186179742 @default.
- W4296023635 cites W4221083848 @default.
- W4296023635 doi "https://doi.org/10.1101/2022.09.10.507145" @default.
- W4296023635 hasPublicationYear "2022" @default.
- W4296023635 type Work @default.
- W4296023635 citedByCount "0" @default.
- W4296023635 crossrefType "posted-content" @default.
- W4296023635 hasAuthorship W4296023635A5001492101 @default.
- W4296023635 hasAuthorship W4296023635A5025593348 @default.
- W4296023635 hasAuthorship W4296023635A5062282859 @default.
- W4296023635 hasAuthorship W4296023635A5073374086 @default.
- W4296023635 hasBestOaLocation W42960236351 @default.
- W4296023635 hasConcept C10010492 @default.
- W4296023635 hasConcept C104317684 @default.
- W4296023635 hasConcept C108583219 @default.
- W4296023635 hasConcept C119857082 @default.
- W4296023635 hasConcept C125411270 @default.
- W4296023635 hasConcept C153180895 @default.
- W4296023635 hasConcept C154945302 @default.
- W4296023635 hasConcept C167625842 @default.
- W4296023635 hasConcept C17744445 @default.
- W4296023635 hasConcept C199539241 @default.
- W4296023635 hasConcept C2776359362 @default.
- W4296023635 hasConcept C2778112365 @default.
- W4296023635 hasConcept C41008148 @default.
- W4296023635 hasConcept C50644808 @default.
- W4296023635 hasConcept C55493867 @default.
- W4296023635 hasConcept C66746571 @default.
- W4296023635 hasConcept C81363708 @default.
- W4296023635 hasConcept C86803240 @default.
- W4296023635 hasConcept C94625758 @default.
- W4296023635 hasConceptScore W4296023635C10010492 @default.
- W4296023635 hasConceptScore W4296023635C104317684 @default.
- W4296023635 hasConceptScore W4296023635C108583219 @default.
- W4296023635 hasConceptScore W4296023635C119857082 @default.
- W4296023635 hasConceptScore W4296023635C125411270 @default.
- W4296023635 hasConceptScore W4296023635C153180895 @default.
- W4296023635 hasConceptScore W4296023635C154945302 @default.
- W4296023635 hasConceptScore W4296023635C167625842 @default.
- W4296023635 hasConceptScore W4296023635C17744445 @default.
- W4296023635 hasConceptScore W4296023635C199539241 @default.
- W4296023635 hasConceptScore W4296023635C2776359362 @default.
- W4296023635 hasConceptScore W4296023635C2778112365 @default.
- W4296023635 hasConceptScore W4296023635C41008148 @default.
- W4296023635 hasConceptScore W4296023635C50644808 @default.
- W4296023635 hasConceptScore W4296023635C55493867 @default.
- W4296023635 hasConceptScore W4296023635C66746571 @default.
- W4296023635 hasConceptScore W4296023635C81363708 @default.
- W4296023635 hasConceptScore W4296023635C86803240 @default.
- W4296023635 hasConceptScore W4296023635C94625758 @default.
- W4296023635 hasLocation W42960236351 @default.
- W4296023635 hasOpenAccess W4296023635 @default.
- W4296023635 hasPrimaryLocation W42960236351 @default.
- W4296023635 hasRelatedWork W2337926734 @default.
- W4296023635 hasRelatedWork W2732542196 @default.
- W4296023635 hasRelatedWork W2738221750 @default.
- W4296023635 hasRelatedWork W2804235212 @default.
- W4296023635 hasRelatedWork W2925767670 @default.
- W4296023635 hasRelatedWork W3156786002 @default.
- W4296023635 hasRelatedWork W4311257506 @default.
- W4296023635 hasRelatedWork W4320802194 @default.