Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296033044> ?p ?o ?g. }
- W4296033044 abstract "Abstract Background Multiple sclerosis (MS) is a neurological condition whose symptoms, severity, and progression over time vary enormously among individuals. Ideally, each person living with MS should be provided with an accurate prognosis at the time of diagnosis, precision in initial and subsequent treatment decisions, and improved timeliness in detecting the need to reassess treatment regimens. To manage these three components, discovering an accurate, objective measure of overall disease severity is essential. Machine learning (ML) algorithms can contribute to finding such a clinically useful biomarker of MS through their ability to search and analyze datasets about potential biomarkers at scale. Our aim was to conduct a systematic review to determine how, and in what way, ML has been applied to the study of MS biomarkers on data from sources other than magnetic resonance imaging. Methods Systematic searches through eight databases were conducted for literature published in 2014–2020 on MS and specified ML algorithms. Results Of the 1, 052 returned papers, 66 met the inclusion criteria. All included papers addressed developing classifiers for MS identification or measuring its progression, typically, using hold-out evaluation on subsets of fewer than 200 participants with MS. These classifiers focused on biomarkers of MS, ranging from those derived from omics and phenotypical data (34.5% clinical, 33.3% biological, 23.0% physiological, and 9.2% drug response). Algorithmic choices were dependent on both the amount of data available for supervised ML (91.5%; 49.2% classification and 42.3% regression) and the requirement to be able to justify the resulting decision-making principles in healthcare settings. Therefore, algorithms based on decision trees and support vector machines were commonly used, and the maximum average performance of 89.9% AUC was found in random forests comparing with other ML algorithms. Conclusions ML is applicable to determining how candidate biomarkers perform in the assessment of disease severity. However, applying ML research to develop decision aids to help clinicians optimize treatment strategies and analyze treatment responses in individual patients calls for creating appropriate data resources and shared experimental protocols. They should target proceeding from segregated classification of signals or natural language to both holistic analyses across data modalities and clinically-meaningful differentiation of disease." @default.
- W4296033044 created "2022-09-17" @default.
- W4296033044 creator A5039895680 @default.
- W4296033044 creator A5055734771 @default.
- W4296033044 creator A5055848500 @default.
- W4296033044 creator A5059778915 @default.
- W4296033044 creator A5068699137 @default.
- W4296033044 creator A5069172791 @default.
- W4296033044 date "2022-09-15" @default.
- W4296033044 modified "2023-09-26" @default.
- W4296033044 title "The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review" @default.
- W4296033044 cites W1870686808 @default.
- W4296033044 cites W1882502823 @default.
- W4296033044 cites W1901616594 @default.
- W4296033044 cites W1911269322 @default.
- W4296033044 cites W1984912995 @default.
- W4296033044 cites W1988587963 @default.
- W4296033044 cites W1997743385 @default.
- W4296033044 cites W2033195617 @default.
- W4296033044 cites W2049638289 @default.
- W4296033044 cites W2054703969 @default.
- W4296033044 cites W2086213827 @default.
- W4296033044 cites W2096951189 @default.
- W4296033044 cites W2098052315 @default.
- W4296033044 cites W2116470496 @default.
- W4296033044 cites W2119408292 @default.
- W4296033044 cites W2127887842 @default.
- W4296033044 cites W2140901756 @default.
- W4296033044 cites W2141772314 @default.
- W4296033044 cites W2183378003 @default.
- W4296033044 cites W2227371161 @default.
- W4296033044 cites W2274138844 @default.
- W4296033044 cites W2314227246 @default.
- W4296033044 cites W2363579488 @default.
- W4296033044 cites W2402392699 @default.
- W4296033044 cites W2483811059 @default.
- W4296033044 cites W2512091001 @default.
- W4296033044 cites W2532600530 @default.
- W4296033044 cites W2550869782 @default.
- W4296033044 cites W2557060223 @default.
- W4296033044 cites W2557082014 @default.
- W4296033044 cites W2562251009 @default.
- W4296033044 cites W2567002406 @default.
- W4296033044 cites W2567649635 @default.
- W4296033044 cites W2572461848 @default.
- W4296033044 cites W2576440140 @default.
- W4296033044 cites W2585584183 @default.
- W4296033044 cites W2588681363 @default.
- W4296033044 cites W2592749504 @default.
- W4296033044 cites W2593739814 @default.
- W4296033044 cites W2599850051 @default.
- W4296033044 cites W2604975863 @default.
- W4296033044 cites W2620639087 @default.
- W4296033044 cites W2624260673 @default.
- W4296033044 cites W2626415059 @default.
- W4296033044 cites W2736471347 @default.
- W4296033044 cites W2741692951 @default.
- W4296033044 cites W2747269915 @default.
- W4296033044 cites W2751843937 @default.
- W4296033044 cites W2754875153 @default.
- W4296033044 cites W2755627811 @default.
- W4296033044 cites W2768910561 @default.
- W4296033044 cites W2777074421 @default.
- W4296033044 cites W2777910604 @default.
- W4296033044 cites W2784348890 @default.
- W4296033044 cites W2789064964 @default.
- W4296033044 cites W2791784198 @default.
- W4296033044 cites W2803448068 @default.
- W4296033044 cites W2806901780 @default.
- W4296033044 cites W2808659520 @default.
- W4296033044 cites W2872085784 @default.
- W4296033044 cites W2883406490 @default.
- W4296033044 cites W2883576155 @default.
- W4296033044 cites W2884205346 @default.
- W4296033044 cites W2888619499 @default.
- W4296033044 cites W2889376139 @default.
- W4296033044 cites W2889388783 @default.
- W4296033044 cites W2890125175 @default.
- W4296033044 cites W2895762064 @default.
- W4296033044 cites W2896479849 @default.
- W4296033044 cites W2898155085 @default.
- W4296033044 cites W2898863929 @default.
- W4296033044 cites W2901262261 @default.
- W4296033044 cites W2902640859 @default.
- W4296033044 cites W2904925223 @default.
- W4296033044 cites W2908978047 @default.
- W4296033044 cites W2909240409 @default.
- W4296033044 cites W2919159054 @default.
- W4296033044 cites W2920798634 @default.
- W4296033044 cites W2921404962 @default.
- W4296033044 cites W2934202790 @default.
- W4296033044 cites W2945466156 @default.
- W4296033044 cites W2945924847 @default.
- W4296033044 cites W2946377293 @default.
- W4296033044 cites W2955723048 @default.
- W4296033044 cites W2956719809 @default.
- W4296033044 cites W2958317004 @default.
- W4296033044 cites W2959847375 @default.
- W4296033044 cites W2963174936 @default.
- W4296033044 cites W2963601606 @default.