Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296046404> ?p ?o ?g. }
- W4296046404 abstract "This study aimed to develop a deep learning model to generate a postoperative corneal axial curvature map of femtosecond laser arcuate keratotomy (FLAK) based on corneal tomography using a pix2pix conditional generative adversarial network (pix2pix cGAN) for surgical planning.A total of 451 eyes of 318 nonconsecutive patients were subjected to FLAK for corneal astigmatism correction during cataract surgery. Paired or single anterior penetrating FLAKs were performed at an 8.0-mm optical zone with a depth of 90% using a femtosecond laser (LenSx laser, Alcon Laboratories, Inc.). Corneal tomography images were acquired from Oculus Pentacam HR (Optikgeräte GmbH, Wetzlar, Germany) before and 3 months after the surgery. The raw data required for analysis consisted of the anterior corneal curvature for a range of ± 3.5 mm around the corneal apex in 0.1-mm steps, which the pseudo-color corneal curvature map synthesized was based on. The deep learning model used was a pix2pix conditional generative adversarial network. The prediction accuracy of synthetic postoperative corneal astigmatism in zones of different diameters centered on the corneal apex was assessed using vector analysis. The synthetic postoperative corneal axial curvature maps were compared with the real postoperative corneal axial curvature maps using the structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR).A total of 386 pairs of preoperative and postoperative corneal tomography data were included in the training set, whereas 65 preoperative data were retrospectively included in the test set. The correlation coefficient between synthetic and real postoperative astigmatism (difference vector) in the 3-mm zone was 0.89, and that between surgically induced astigmatism (SIA) was 0.93. The mean absolute errors of SIA for real and synthetic postoperative corneal axial curvature maps in the 1-, 3-, and 5-mm zone were 0.20 ± 0.25, 0.12 ± 0.17, and 0.09 ± 0.13 diopters, respectively. The average SSIM and PSNR of the 3-mm zone were 0.86 ± 0.04 and 18.24 ± 5.78, respectively.Our results showed that the application of pix2pix cGAN can synthesize plausible postoperative corneal tomography for FLAK, showing the possibility of using GAN to predict corneal tomography, with the potential of applying artificial intelligence to construct surgical planning models." @default.
- W4296046404 created "2022-09-17" @default.
- W4296046404 creator A5016927100 @default.
- W4296046404 creator A5037935776 @default.
- W4296046404 creator A5071294897 @default.
- W4296046404 creator A5077423550 @default.
- W4296046404 creator A5077558876 @default.
- W4296046404 creator A5080035429 @default.
- W4296046404 creator A5089637502 @default.
- W4296046404 date "2022-09-16" @default.
- W4296046404 modified "2023-10-14" @default.
- W4296046404 title "Prediction of corneal astigmatism based on corneal tomography after femtosecond laser arcuate keratotomy using a pix2pix conditional generative adversarial network" @default.
- W4296046404 cites W1603997833 @default.
- W4296046404 cites W1972108067 @default.
- W4296046404 cites W1975128894 @default.
- W4296046404 cites W2032679447 @default.
- W4296046404 cites W2063456795 @default.
- W4296046404 cites W2081830426 @default.
- W4296046404 cites W2291206954 @default.
- W4296046404 cites W2308832024 @default.
- W4296046404 cites W2482949142 @default.
- W4296046404 cites W2487275160 @default.
- W4296046404 cites W2618991273 @default.
- W4296046404 cites W2762205817 @default.
- W4296046404 cites W2790449816 @default.
- W4296046404 cites W2810488957 @default.
- W4296046404 cites W2891830459 @default.
- W4296046404 cites W2895693960 @default.
- W4296046404 cites W2901278671 @default.
- W4296046404 cites W2947458823 @default.
- W4296046404 cites W2965284782 @default.
- W4296046404 cites W2996663199 @default.
- W4296046404 cites W3005231931 @default.
- W4296046404 cites W3013530016 @default.
- W4296046404 cites W3021426668 @default.
- W4296046404 cites W3029827636 @default.
- W4296046404 cites W3036746724 @default.
- W4296046404 cites W3082126966 @default.
- W4296046404 cites W3090086233 @default.
- W4296046404 cites W3096831136 @default.
- W4296046404 cites W3114299812 @default.
- W4296046404 cites W3129749089 @default.
- W4296046404 cites W3152456958 @default.
- W4296046404 cites W3158757821 @default.
- W4296046404 cites W3171429286 @default.
- W4296046404 cites W3197613183 @default.
- W4296046404 cites W4298283454 @default.
- W4296046404 doi "https://doi.org/10.3389/fpubh.2022.1012929" @default.
- W4296046404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36187623" @default.
- W4296046404 hasPublicationYear "2022" @default.
- W4296046404 type Work @default.
- W4296046404 citedByCount "0" @default.
- W4296046404 crossrefType "journal-article" @default.
- W4296046404 hasAuthorship W4296046404A5016927100 @default.
- W4296046404 hasAuthorship W4296046404A5037935776 @default.
- W4296046404 hasAuthorship W4296046404A5071294897 @default.
- W4296046404 hasAuthorship W4296046404A5077423550 @default.
- W4296046404 hasAuthorship W4296046404A5077558876 @default.
- W4296046404 hasAuthorship W4296046404A5080035429 @default.
- W4296046404 hasAuthorship W4296046404A5089637502 @default.
- W4296046404 hasBestOaLocation W42960464041 @default.
- W4296046404 hasConcept C109821595 @default.
- W4296046404 hasConcept C118487528 @default.
- W4296046404 hasConcept C119767625 @default.
- W4296046404 hasConcept C120665830 @default.
- W4296046404 hasConcept C121332964 @default.
- W4296046404 hasConcept C154945302 @default.
- W4296046404 hasConcept C167735695 @default.
- W4296046404 hasConcept C2776882836 @default.
- W4296046404 hasConcept C2781053140 @default.
- W4296046404 hasConcept C41008148 @default.
- W4296046404 hasConcept C520434653 @default.
- W4296046404 hasConcept C71924100 @default.
- W4296046404 hasConceptScore W4296046404C109821595 @default.
- W4296046404 hasConceptScore W4296046404C118487528 @default.
- W4296046404 hasConceptScore W4296046404C119767625 @default.
- W4296046404 hasConceptScore W4296046404C120665830 @default.
- W4296046404 hasConceptScore W4296046404C121332964 @default.
- W4296046404 hasConceptScore W4296046404C154945302 @default.
- W4296046404 hasConceptScore W4296046404C167735695 @default.
- W4296046404 hasConceptScore W4296046404C2776882836 @default.
- W4296046404 hasConceptScore W4296046404C2781053140 @default.
- W4296046404 hasConceptScore W4296046404C41008148 @default.
- W4296046404 hasConceptScore W4296046404C520434653 @default.
- W4296046404 hasConceptScore W4296046404C71924100 @default.
- W4296046404 hasLocation W42960464041 @default.
- W4296046404 hasLocation W42960464042 @default.
- W4296046404 hasLocation W42960464043 @default.
- W4296046404 hasOpenAccess W4296046404 @default.
- W4296046404 hasPrimaryLocation W42960464041 @default.
- W4296046404 hasRelatedWork W1978562968 @default.
- W4296046404 hasRelatedWork W2335502587 @default.
- W4296046404 hasRelatedWork W2524482782 @default.
- W4296046404 hasRelatedWork W2739122590 @default.
- W4296046404 hasRelatedWork W2806774643 @default.
- W4296046404 hasRelatedWork W2945543346 @default.
- W4296046404 hasRelatedWork W2987671264 @default.
- W4296046404 hasRelatedWork W2994815738 @default.
- W4296046404 hasRelatedWork W3030146279 @default.
- W4296046404 hasRelatedWork W4307497871 @default.