Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296082448> ?p ?o ?g. }
- W4296082448 endingPage "107274" @default.
- W4296082448 startingPage "107274" @default.
- W4296082448 abstract "To overcome the problems of imaging speed and bulky volume of the traditional hyperspectral imaging systems, the recently proposed compact, snapshot hyperspectral imaging system with diffracted rotation has attracted a lot of interest. Due to the severe degradation of the diffracted rotation blurred image, the restored hyperspectral image (HSI) suffers from a lack of spatial detail information and spectral accuracy. To improve the quality of the reconstructed HSI, we present a joint imaging system of diffractive imaging and clear imaging as well as a convolutional neural network (CNN) based method with two input branches for HSI reconstruction. In the reconstruction network, we develop a feature extraction block (FEB) to extract the features of the two input images, respectively. Subsequently, a double residual block (DRB) is designed to fuse and reconstruct the extracted features. Experimental results show that HSI with high spatial resolution and spectral accuracy can be reconstructed. Our method outperforms the state-of-the-art methods in terms of quantitative metrics and visual quality." @default.
- W4296082448 created "2022-09-17" @default.
- W4296082448 creator A5003982996 @default.
- W4296082448 creator A5018882707 @default.
- W4296082448 creator A5020746135 @default.
- W4296082448 creator A5030559871 @default.
- W4296082448 creator A5031230991 @default.
- W4296082448 creator A5070468133 @default.
- W4296082448 creator A5089376139 @default.
- W4296082448 date "2023-01-01" @default.
- W4296082448 modified "2023-09-23" @default.
- W4296082448 title "Hyperspectral image reconstruction based on the fusion of diffracted rotation blurred and clear images" @default.
- W4296082448 cites W1811873273 @default.
- W4296082448 cites W1972112766 @default.
- W4296082448 cites W1981720199 @default.
- W4296082448 cites W2002498099 @default.
- W4296082448 cites W2010319424 @default.
- W4296082448 cites W2011813002 @default.
- W4296082448 cites W2048738324 @default.
- W4296082448 cites W2077985153 @default.
- W4296082448 cites W2124743705 @default.
- W4296082448 cites W2129953395 @default.
- W4296082448 cites W2132779142 @default.
- W4296082448 cites W2133665775 @default.
- W4296082448 cites W2154761409 @default.
- W4296082448 cites W2168478992 @default.
- W4296082448 cites W2398828493 @default.
- W4296082448 cites W2462592242 @default.
- W4296082448 cites W2520430674 @default.
- W4296082448 cites W2606022713 @default.
- W4296082448 cites W2792142731 @default.
- W4296082448 cites W2884144629 @default.
- W4296082448 cites W2922178938 @default.
- W4296082448 cites W2958407396 @default.
- W4296082448 cites W2963505747 @default.
- W4296082448 cites W2964275574 @default.
- W4296082448 cites W2981890818 @default.
- W4296082448 cites W3024589943 @default.
- W4296082448 cites W3092607926 @default.
- W4296082448 cites W3094174092 @default.
- W4296082448 cites W3096654432 @default.
- W4296082448 cites W3118175983 @default.
- W4296082448 cites W3146742156 @default.
- W4296082448 cites W3161700323 @default.
- W4296082448 cites W3165528013 @default.
- W4296082448 cites W3165663444 @default.
- W4296082448 cites W3178373045 @default.
- W4296082448 cites W3182022665 @default.
- W4296082448 cites W4200583178 @default.
- W4296082448 cites W4220822850 @default.
- W4296082448 cites W4229450938 @default.
- W4296082448 doi "https://doi.org/10.1016/j.optlaseng.2022.107274" @default.
- W4296082448 hasPublicationYear "2023" @default.
- W4296082448 type Work @default.
- W4296082448 citedByCount "4" @default.
- W4296082448 countsByYear W42960824482022 @default.
- W4296082448 countsByYear W42960824482023 @default.
- W4296082448 crossrefType "journal-article" @default.
- W4296082448 hasAuthorship W4296082448A5003982996 @default.
- W4296082448 hasAuthorship W4296082448A5018882707 @default.
- W4296082448 hasAuthorship W4296082448A5020746135 @default.
- W4296082448 hasAuthorship W4296082448A5030559871 @default.
- W4296082448 hasAuthorship W4296082448A5031230991 @default.
- W4296082448 hasAuthorship W4296082448A5070468133 @default.
- W4296082448 hasAuthorship W4296082448A5089376139 @default.
- W4296082448 hasConcept C11413529 @default.
- W4296082448 hasConcept C115961682 @default.
- W4296082448 hasConcept C141379421 @default.
- W4296082448 hasConcept C153180895 @default.
- W4296082448 hasConcept C154945302 @default.
- W4296082448 hasConcept C155512373 @default.
- W4296082448 hasConcept C159078339 @default.
- W4296082448 hasConcept C31972630 @default.
- W4296082448 hasConcept C41008148 @default.
- W4296082448 hasConcept C55020928 @default.
- W4296082448 hasConcept C74050887 @default.
- W4296082448 hasConcept C81363708 @default.
- W4296082448 hasConceptScore W4296082448C11413529 @default.
- W4296082448 hasConceptScore W4296082448C115961682 @default.
- W4296082448 hasConceptScore W4296082448C141379421 @default.
- W4296082448 hasConceptScore W4296082448C153180895 @default.
- W4296082448 hasConceptScore W4296082448C154945302 @default.
- W4296082448 hasConceptScore W4296082448C155512373 @default.
- W4296082448 hasConceptScore W4296082448C159078339 @default.
- W4296082448 hasConceptScore W4296082448C31972630 @default.
- W4296082448 hasConceptScore W4296082448C41008148 @default.
- W4296082448 hasConceptScore W4296082448C55020928 @default.
- W4296082448 hasConceptScore W4296082448C74050887 @default.
- W4296082448 hasConceptScore W4296082448C81363708 @default.
- W4296082448 hasLocation W42960824481 @default.
- W4296082448 hasOpenAccess W4296082448 @default.
- W4296082448 hasPrimaryLocation W42960824481 @default.
- W4296082448 hasRelatedWork W2028628118 @default.
- W4296082448 hasRelatedWork W2331674254 @default.
- W4296082448 hasRelatedWork W2393116105 @default.
- W4296082448 hasRelatedWork W2401401198 @default.
- W4296082448 hasRelatedWork W2767651786 @default.
- W4296082448 hasRelatedWork W2781623059 @default.