Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296083162> ?p ?o ?g. }
- W4296083162 endingPage "4020" @default.
- W4296083162 startingPage "4014" @default.
- W4296083162 abstract "Gram staining (GS) is one of the routine microbiological operations to classify bacteria based on the cell wall structure. Accurate GS classification of pathogens is of great significance since it helps correct administration of antimicrobial treatment. The laborious procedure and low sensitivity results related to conventional GS have resulted in reluctance among clinicians. In this study, we integrate confocal Raman spectroscopy and machine learning techniques to distinguish Gram-negative (GN) or Gram-positive (GP) bacteria. A single-cell Raman database including seven most common clinical pathogens (three GP strains and four GN strains) was constructed. Machine learning algorithms including the support-vector machine (SVM), k-nearest neighbors' algorithm (k-NN), gradient boosting machine (GBM), linear discriminant analysis (LDA), and t-distributed stochastic neighbor embedding (t-SNE) were trained to achieve the binary classification for GS. With such a relatively small database, the SVM model achieved the highest accuracy of 98.1%. The molecular signatures of GN and GP embedded in their Raman fingerprints were identified with hierarchical cluster analysis (HCA). The results indicated that Raman peaks for peptidoglycan and teichoic acid were the most significant factors that contributed to accurate classification. The Raman machine learning approach could greatly enhance the diagnosis of pathogenic infections." @default.
- W4296083162 created "2022-09-17" @default.
- W4296083162 creator A5006651636 @default.
- W4296083162 creator A5010864259 @default.
- W4296083162 creator A5011940798 @default.
- W4296083162 creator A5013473081 @default.
- W4296083162 creator A5015910981 @default.
- W4296083162 creator A5055316867 @default.
- W4296083162 creator A5065145570 @default.
- W4296083162 creator A5067316154 @default.
- W4296083162 creator A5069199629 @default.
- W4296083162 creator A5074853872 @default.
- W4296083162 creator A5075795627 @default.
- W4296083162 creator A5079252328 @default.
- W4296083162 date "2022-01-01" @default.
- W4296083162 modified "2023-09-26" @default.
- W4296083162 title "Stain-free Gram staining classification of pathogens <i>via</i> single-cell Raman spectroscopy combined with machine learning" @default.
- W4296083162 cites W1969098225 @default.
- W4296083162 cites W1969146098 @default.
- W4296083162 cites W1970710602 @default.
- W4296083162 cites W1972318722 @default.
- W4296083162 cites W1977182656 @default.
- W4296083162 cites W1987784209 @default.
- W4296083162 cites W1997712011 @default.
- W4296083162 cites W2007549716 @default.
- W4296083162 cites W2007576973 @default.
- W4296083162 cites W2010680821 @default.
- W4296083162 cites W2028153733 @default.
- W4296083162 cites W2038174785 @default.
- W4296083162 cites W2048719990 @default.
- W4296083162 cites W2051572583 @default.
- W4296083162 cites W2055289458 @default.
- W4296083162 cites W2055766425 @default.
- W4296083162 cites W2055848149 @default.
- W4296083162 cites W2057428057 @default.
- W4296083162 cites W2065262686 @default.
- W4296083162 cites W2067048294 @default.
- W4296083162 cites W2072674751 @default.
- W4296083162 cites W2077340481 @default.
- W4296083162 cites W2095864009 @default.
- W4296083162 cites W2104012997 @default.
- W4296083162 cites W2106783717 @default.
- W4296083162 cites W2124569930 @default.
- W4296083162 cites W2135063718 @default.
- W4296083162 cites W2141133191 @default.
- W4296083162 cites W2142827986 @default.
- W4296083162 cites W2147377968 @default.
- W4296083162 cites W2154850723 @default.
- W4296083162 cites W2157869310 @default.
- W4296083162 cites W2187134310 @default.
- W4296083162 cites W2223023822 @default.
- W4296083162 cites W2315528706 @default.
- W4296083162 cites W2463042271 @default.
- W4296083162 cites W2528018901 @default.
- W4296083162 cites W2539186102 @default.
- W4296083162 cites W2626160162 @default.
- W4296083162 cites W2765397480 @default.
- W4296083162 cites W2805070347 @default.
- W4296083162 cites W2918200658 @default.
- W4296083162 cites W2938910572 @default.
- W4296083162 cites W2941737992 @default.
- W4296083162 cites W2965726451 @default.
- W4296083162 cites W2982482221 @default.
- W4296083162 cites W3032972414 @default.
- W4296083162 cites W3109239857 @default.
- W4296083162 cites W3136473601 @default.
- W4296083162 doi "https://doi.org/10.1039/d2ay01056a" @default.
- W4296083162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36196964" @default.
- W4296083162 hasPublicationYear "2022" @default.
- W4296083162 type Work @default.
- W4296083162 citedByCount "2" @default.
- W4296083162 countsByYear W42960831622023 @default.
- W4296083162 crossrefType "journal-article" @default.
- W4296083162 hasAuthorship W4296083162A5006651636 @default.
- W4296083162 hasAuthorship W4296083162A5010864259 @default.
- W4296083162 hasAuthorship W4296083162A5011940798 @default.
- W4296083162 hasAuthorship W4296083162A5013473081 @default.
- W4296083162 hasAuthorship W4296083162A5015910981 @default.
- W4296083162 hasAuthorship W4296083162A5055316867 @default.
- W4296083162 hasAuthorship W4296083162A5065145570 @default.
- W4296083162 hasAuthorship W4296083162A5067316154 @default.
- W4296083162 hasAuthorship W4296083162A5069199629 @default.
- W4296083162 hasAuthorship W4296083162A5074853872 @default.
- W4296083162 hasAuthorship W4296083162A5075795627 @default.
- W4296083162 hasAuthorship W4296083162A5079252328 @default.
- W4296083162 hasConcept C119857082 @default.
- W4296083162 hasConcept C120665830 @default.
- W4296083162 hasConcept C121332964 @default.
- W4296083162 hasConcept C12267149 @default.
- W4296083162 hasConcept C153180895 @default.
- W4296083162 hasConcept C154945302 @default.
- W4296083162 hasConcept C40003534 @default.
- W4296083162 hasConcept C41008148 @default.
- W4296083162 hasConcept C69738355 @default.
- W4296083162 hasConcept C86803240 @default.
- W4296083162 hasConceptScore W4296083162C119857082 @default.
- W4296083162 hasConceptScore W4296083162C120665830 @default.
- W4296083162 hasConceptScore W4296083162C121332964 @default.