Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296087367> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4296087367 abstract "Abstract Eventually, the wireless system is one of the most prominent and effectively overloaded with enormous amounts of data information due to the rising number of users. To effectively handle widespread congestion, the current iteration of multiple access (MA) will inevitably fail. Recently, the process of non-orthogonal multiple access (NOMA) has been brought to light as a promising one for 5G and beyond, since it can improve spectrum and power efficiency for a large number of users simultaneously. In this research, a downlink Hybrid NOMA (H-NOMA) is recommended that combines the advantages of TDMA and NOMA to enhance the robustness of the system and offer two resource management techniques to maximize both outage capacity and ergodic size in a 5G URLLC scenario Ultra-Reliable Low Latency Communications (URLLC), and we conclude by proposing a deep-learning-based network, ResNet-50, to cut down on the complexity and latency of 5G URLLC. The suggested systems re-assign subcarrier in a way that maximizes outage capacity rather than ergodic capacity alone, and they select the candidate user for gaining subcarrier in a novel approach. The proposed model relies heavily on NOMA deep residual video identification to guarantee precise user categorization and widespread interaction. Using the obtained data, we examine how the suggested method stacks up against the conventional NOMA in terms of BER. When compared to other methods, the proposed one achieves a 93% (bit/s/Hz) spectrum efficiency, a 92% (bit/Hz/Joule) energy efficiency, and a 91% (bps/Hz) attainable data rate." @default.
- W4296087367 created "2022-09-17" @default.
- W4296087367 creator A5032995342 @default.
- W4296087367 creator A5065958341 @default.
- W4296087367 date "2022-09-15" @default.
- W4296087367 modified "2023-09-26" @default.
- W4296087367 title "Downlink Video Communications for Enhanced Hybrid NOMA using Deep Learning Model" @default.
- W4296087367 cites W2292586060 @default.
- W4296087367 cites W2774086490 @default.
- W4296087367 cites W2799307703 @default.
- W4296087367 cites W2883104796 @default.
- W4296087367 cites W2892078410 @default.
- W4296087367 cites W2966038277 @default.
- W4296087367 cites W2968018638 @default.
- W4296087367 cites W3019149708 @default.
- W4296087367 cites W3037040098 @default.
- W4296087367 cites W3107509994 @default.
- W4296087367 cites W3131790995 @default.
- W4296087367 cites W3134651392 @default.
- W4296087367 cites W3158992287 @default.
- W4296087367 cites W3198733547 @default.
- W4296087367 cites W3215417349 @default.
- W4296087367 cites W4220674695 @default.
- W4296087367 cites W4224250667 @default.
- W4296087367 cites W4280644851 @default.
- W4296087367 doi "https://doi.org/10.21203/rs.3.rs-2055180/v1" @default.
- W4296087367 hasPublicationYear "2022" @default.
- W4296087367 type Work @default.
- W4296087367 citedByCount "0" @default.
- W4296087367 crossrefType "posted-content" @default.
- W4296087367 hasAuthorship W4296087367A5032995342 @default.
- W4296087367 hasAuthorship W4296087367A5065958341 @default.
- W4296087367 hasBestOaLocation W42960873671 @default.
- W4296087367 hasConcept C127162648 @default.
- W4296087367 hasConcept C127413603 @default.
- W4296087367 hasConcept C137246740 @default.
- W4296087367 hasConcept C138660444 @default.
- W4296087367 hasConcept C198329298 @default.
- W4296087367 hasConcept C24326235 @default.
- W4296087367 hasConcept C2775918612 @default.
- W4296087367 hasConcept C31258907 @default.
- W4296087367 hasConcept C40409654 @default.
- W4296087367 hasConcept C41008148 @default.
- W4296087367 hasConcept C46637626 @default.
- W4296087367 hasConcept C79403827 @default.
- W4296087367 hasConceptScore W4296087367C127162648 @default.
- W4296087367 hasConceptScore W4296087367C127413603 @default.
- W4296087367 hasConceptScore W4296087367C137246740 @default.
- W4296087367 hasConceptScore W4296087367C138660444 @default.
- W4296087367 hasConceptScore W4296087367C198329298 @default.
- W4296087367 hasConceptScore W4296087367C24326235 @default.
- W4296087367 hasConceptScore W4296087367C2775918612 @default.
- W4296087367 hasConceptScore W4296087367C31258907 @default.
- W4296087367 hasConceptScore W4296087367C40409654 @default.
- W4296087367 hasConceptScore W4296087367C41008148 @default.
- W4296087367 hasConceptScore W4296087367C46637626 @default.
- W4296087367 hasConceptScore W4296087367C79403827 @default.
- W4296087367 hasLocation W42960873671 @default.
- W4296087367 hasOpenAccess W4296087367 @default.
- W4296087367 hasPrimaryLocation W42960873671 @default.
- W4296087367 hasRelatedWork W2495540815 @default.
- W4296087367 hasRelatedWork W2796093738 @default.
- W4296087367 hasRelatedWork W2810170137 @default.
- W4296087367 hasRelatedWork W3042397850 @default.
- W4296087367 hasRelatedWork W3098197514 @default.
- W4296087367 hasRelatedWork W3117207195 @default.
- W4296087367 hasRelatedWork W3120875967 @default.
- W4296087367 hasRelatedWork W4200017771 @default.
- W4296087367 hasRelatedWork W4296087367 @default.
- W4296087367 hasRelatedWork W4298012258 @default.
- W4296087367 isParatext "false" @default.
- W4296087367 isRetracted "false" @default.
- W4296087367 workType "article" @default.