Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296097835> ?p ?o ?g. }
- W4296097835 endingPage "764" @default.
- W4296097835 startingPage "735" @default.
- W4296097835 abstract "Abstract Customer churn, which insurance companies use to describe the non-renewal of existing customers, is a widespread and expensive problem in general insurance, particularly because contracts are usually short-term and are renewed periodically. Traditionally, customer churn analyses have employed models which utilise only a binary outcome (churn or not churn) in one period. However, real business relationships are multi-period, and policyholders may reside and transition between a wider range of states beyond that of the simply churn/not churn throughout this relationship. To better encapsulate the richness of policyholder behaviours through time, we propose multi-state customer churn analysis, which aims to model behaviour over a larger number of states (defined by different combinations of insurance coverage taken) and across multiple periods (thereby making use of readily available longitudinal data). Using multinomial logistic regression (MLR) with a second-order Markov assumption, we demonstrate how multi-state customer churn analysis offers deeper insights into how a policyholder’s transition history is associated with their decision making, whether that be to retain the current set of policies, churn, or add/drop a coverage. Applying this model to commercial insurance data from the Wisconsin Local Government Property Insurance Fund, we illustrate how transition probabilities between states are affected by differing sets of explanatory variables and that a multi-state analysis can potentially offer stronger predictive performance and more accurate calculations of customer lifetime value (say), compared to the traditional customer churn analysis techniques." @default.
- W4296097835 created "2022-09-17" @default.
- W4296097835 creator A5000251612 @default.
- W4296097835 creator A5009914167 @default.
- W4296097835 creator A5013292507 @default.
- W4296097835 creator A5025157924 @default.
- W4296097835 date "2022-09-01" @default.
- W4296097835 modified "2023-10-02" @default.
- W4296097835 title "MULTI-STATE MODELLING OF CUSTOMER CHURN" @default.
- W4296097835 cites W1486996746 @default.
- W4296097835 cites W1513618424 @default.
- W4296097835 cites W1566768190 @default.
- W4296097835 cites W1804990272 @default.
- W4296097835 cites W187340461 @default.
- W4296097835 cites W1912982817 @default.
- W4296097835 cites W1978080595 @default.
- W4296097835 cites W1994797112 @default.
- W4296097835 cites W2004485818 @default.
- W4296097835 cites W2017027240 @default.
- W4296097835 cites W2026219386 @default.
- W4296097835 cites W2044075761 @default.
- W4296097835 cites W2058904371 @default.
- W4296097835 cites W2082490233 @default.
- W4296097835 cites W2135514567 @default.
- W4296097835 cites W2178341330 @default.
- W4296097835 cites W2182376331 @default.
- W4296097835 cites W2276762430 @default.
- W4296097835 cites W2332113613 @default.
- W4296097835 cites W2356137415 @default.
- W4296097835 cites W2465783354 @default.
- W4296097835 cites W2493600595 @default.
- W4296097835 cites W2661019854 @default.
- W4296097835 cites W2994189742 @default.
- W4296097835 cites W2998589708 @default.
- W4296097835 cites W3010715186 @default.
- W4296097835 cites W3086873562 @default.
- W4296097835 cites W3106909083 @default.
- W4296097835 cites W3122004293 @default.
- W4296097835 cites W3123293721 @default.
- W4296097835 cites W3123614577 @default.
- W4296097835 cites W3125318139 @default.
- W4296097835 cites W3150843665 @default.
- W4296097835 cites W3169829358 @default.
- W4296097835 cites W3184326578 @default.
- W4296097835 cites W3212129041 @default.
- W4296097835 cites W4226475008 @default.
- W4296097835 cites W4232654400 @default.
- W4296097835 cites W4239936526 @default.
- W4296097835 cites W571200655 @default.
- W4296097835 cites W620465456 @default.
- W4296097835 cites W657476391 @default.
- W4296097835 doi "https://doi.org/10.1017/asb.2022.18" @default.
- W4296097835 hasPublicationYear "2022" @default.
- W4296097835 type Work @default.
- W4296097835 citedByCount "2" @default.
- W4296097835 countsByYear W42960978352023 @default.
- W4296097835 crossrefType "journal-article" @default.
- W4296097835 hasAuthorship W4296097835A5000251612 @default.
- W4296097835 hasAuthorship W4296097835A5009914167 @default.
- W4296097835 hasAuthorship W4296097835A5013292507 @default.
- W4296097835 hasAuthorship W4296097835A5025157924 @default.
- W4296097835 hasConcept C101276457 @default.
- W4296097835 hasConcept C117568660 @default.
- W4296097835 hasConcept C119857082 @default.
- W4296097835 hasConcept C130721881 @default.
- W4296097835 hasConcept C140781008 @default.
- W4296097835 hasConcept C144133560 @default.
- W4296097835 hasConcept C149782125 @default.
- W4296097835 hasConcept C162324750 @default.
- W4296097835 hasConcept C162853370 @default.
- W4296097835 hasConcept C2780378061 @default.
- W4296097835 hasConcept C41008148 @default.
- W4296097835 hasConceptScore W4296097835C101276457 @default.
- W4296097835 hasConceptScore W4296097835C117568660 @default.
- W4296097835 hasConceptScore W4296097835C119857082 @default.
- W4296097835 hasConceptScore W4296097835C130721881 @default.
- W4296097835 hasConceptScore W4296097835C140781008 @default.
- W4296097835 hasConceptScore W4296097835C144133560 @default.
- W4296097835 hasConceptScore W4296097835C149782125 @default.
- W4296097835 hasConceptScore W4296097835C162324750 @default.
- W4296097835 hasConceptScore W4296097835C162853370 @default.
- W4296097835 hasConceptScore W4296097835C2780378061 @default.
- W4296097835 hasConceptScore W4296097835C41008148 @default.
- W4296097835 hasIssue "3" @default.
- W4296097835 hasLocation W42960978351 @default.
- W4296097835 hasOpenAccess W4296097835 @default.
- W4296097835 hasPrimaryLocation W42960978351 @default.
- W4296097835 hasRelatedWork W1021133854 @default.
- W4296097835 hasRelatedWork W1491556396 @default.
- W4296097835 hasRelatedWork W1585521143 @default.
- W4296097835 hasRelatedWork W1999711686 @default.
- W4296097835 hasRelatedWork W2124901150 @default.
- W4296097835 hasRelatedWork W2191624819 @default.
- W4296097835 hasRelatedWork W3122213245 @default.
- W4296097835 hasRelatedWork W3123107177 @default.
- W4296097835 hasRelatedWork W3125758775 @default.
- W4296097835 hasRelatedWork W4299465595 @default.
- W4296097835 hasVolume "52" @default.