Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296104385> ?p ?o ?g. }
- W4296104385 endingPage "4600" @default.
- W4296104385 startingPage "4600" @default.
- W4296104385 abstract "Obtaining high-spatial–high-temporal (HTHS) resolution remote sensing images from a single sensor remains a great challenge due to the cost and technical limitations. Spatiotemporal fusion (STF) technology breaks through the technical limitations of existing sensors and provides a convenient and economical solution for obtaining HTHS resolution images. At present, most STF methods use stacked convolutional layers to extract image features and then obtain fusion images by using a summation strategy. However, these convolution operations may lead to the loss of feature information, and the summation strategy results in poorly fused images due to a lack of consideration of global spatial feature information. To address these issues, this article proposes a STF network architecture based on multiscale and attention mechanisms (MANet). The multiscale mechanism module composed of dilated convolutions is used to extract the detailed features of low-spatial resolution remote sensing images at multiple scales. The channel attention mechanism adaptively adjusts the weights of the feature map channels to retain more temporal and spatial information in the upsampling process, while the non-local attention mechanism adjusts the initial fusion images to obtain more accurate predicted images by calculating the correlation between pixels. We use two datasets with different characteristics to conduct the experiments, and the results prove that the proposed MANet method with fewer parameters obtains better fusion results than the existing machine learning-based and deep learning-based fusion methods." @default.
- W4296104385 created "2022-09-17" @default.
- W4296104385 creator A5001084384 @default.
- W4296104385 creator A5043449790 @default.
- W4296104385 creator A5071735215 @default.
- W4296104385 creator A5084538363 @default.
- W4296104385 date "2022-09-15" @default.
- W4296104385 modified "2023-10-14" @default.
- W4296104385 title "MANet: A Network Architecture for Remote Sensing Spatiotemporal Fusion Based on Multiscale and Attention Mechanisms" @default.
- W4296104385 cites W1588434184 @default.
- W4296104385 cites W1885185971 @default.
- W4296104385 cites W1970515153 @default.
- W4296104385 cites W1982956952 @default.
- W4296104385 cites W1987927366 @default.
- W4296104385 cites W1988883312 @default.
- W4296104385 cites W2003224325 @default.
- W4296104385 cites W2031596845 @default.
- W4296104385 cites W2055007440 @default.
- W4296104385 cites W2056811372 @default.
- W4296104385 cites W2067234885 @default.
- W4296104385 cites W2082263501 @default.
- W4296104385 cites W2082286381 @default.
- W4296104385 cites W2088603520 @default.
- W4296104385 cites W2098457997 @default.
- W4296104385 cites W2100329651 @default.
- W4296104385 cites W2109479674 @default.
- W4296104385 cites W2133665775 @default.
- W4296104385 cites W2162416391 @default.
- W4296104385 cites W2200350976 @default.
- W4296104385 cites W2303440783 @default.
- W4296104385 cites W2562637781 @default.
- W4296104385 cites W2563658020 @default.
- W4296104385 cites W2565639579 @default.
- W4296104385 cites W2793445582 @default.
- W4296104385 cites W2843468165 @default.
- W4296104385 cites W2900989288 @default.
- W4296104385 cites W2939570633 @default.
- W4296104385 cites W2963182372 @default.
- W4296104385 cites W2963420686 @default.
- W4296104385 cites W2963446712 @default.
- W4296104385 cites W2965608468 @default.
- W4296104385 cites W2981899103 @default.
- W4296104385 cites W2984955093 @default.
- W4296104385 cites W2992343265 @default.
- W4296104385 cites W3000086214 @default.
- W4296104385 cites W3033239110 @default.
- W4296104385 cites W3123173184 @default.
- W4296104385 cites W3183086098 @default.
- W4296104385 cites W3201225939 @default.
- W4296104385 cites W3203535769 @default.
- W4296104385 cites W4206730401 @default.
- W4296104385 doi "https://doi.org/10.3390/rs14184600" @default.
- W4296104385 hasPublicationYear "2022" @default.
- W4296104385 type Work @default.
- W4296104385 citedByCount "4" @default.
- W4296104385 countsByYear W42961043852023 @default.
- W4296104385 crossrefType "journal-article" @default.
- W4296104385 hasAuthorship W4296104385A5001084384 @default.
- W4296104385 hasAuthorship W4296104385A5043449790 @default.
- W4296104385 hasAuthorship W4296104385A5071735215 @default.
- W4296104385 hasAuthorship W4296104385A5084538363 @default.
- W4296104385 hasBestOaLocation W42961043851 @default.
- W4296104385 hasConcept C108583219 @default.
- W4296104385 hasConcept C110384440 @default.
- W4296104385 hasConcept C111919701 @default.
- W4296104385 hasConcept C115961682 @default.
- W4296104385 hasConcept C127162648 @default.
- W4296104385 hasConcept C138885662 @default.
- W4296104385 hasConcept C153180895 @default.
- W4296104385 hasConcept C154945302 @default.
- W4296104385 hasConcept C158525013 @default.
- W4296104385 hasConcept C160633673 @default.
- W4296104385 hasConcept C2776401178 @default.
- W4296104385 hasConcept C31258907 @default.
- W4296104385 hasConcept C31972630 @default.
- W4296104385 hasConcept C41008148 @default.
- W4296104385 hasConcept C41895202 @default.
- W4296104385 hasConcept C45347329 @default.
- W4296104385 hasConcept C50644808 @default.
- W4296104385 hasConcept C69744172 @default.
- W4296104385 hasConcept C81363708 @default.
- W4296104385 hasConcept C98045186 @default.
- W4296104385 hasConceptScore W4296104385C108583219 @default.
- W4296104385 hasConceptScore W4296104385C110384440 @default.
- W4296104385 hasConceptScore W4296104385C111919701 @default.
- W4296104385 hasConceptScore W4296104385C115961682 @default.
- W4296104385 hasConceptScore W4296104385C127162648 @default.
- W4296104385 hasConceptScore W4296104385C138885662 @default.
- W4296104385 hasConceptScore W4296104385C153180895 @default.
- W4296104385 hasConceptScore W4296104385C154945302 @default.
- W4296104385 hasConceptScore W4296104385C158525013 @default.
- W4296104385 hasConceptScore W4296104385C160633673 @default.
- W4296104385 hasConceptScore W4296104385C2776401178 @default.
- W4296104385 hasConceptScore W4296104385C31258907 @default.
- W4296104385 hasConceptScore W4296104385C31972630 @default.
- W4296104385 hasConceptScore W4296104385C41008148 @default.
- W4296104385 hasConceptScore W4296104385C41895202 @default.
- W4296104385 hasConceptScore W4296104385C45347329 @default.