Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296119800> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4296119800 endingPage "1141" @default.
- W4296119800 startingPage "1133" @default.
- W4296119800 abstract "To qualitatively and quantitatively assess integrated segmentation of three convolutional neural network (CNN) models for the creation of a maxillary virtual patient (MVP) from cone-beam computed tomography (CBCT) images.A dataset of 40 CBCT scans acquired with different scanning parameters was selected. Three previously validated individual CNN models were integrated to achieve a combined segmentation of maxillary complex, maxillary sinuses, and upper dentition. Two experts performed a qualitative assessment, scoring-integrated segmentations from 0 to 10 based on the number of required refinements. Furthermore, experts executed refinements, allowing performance comparison between integrated automated segmentation (AS) and refined segmentation (RS) models. Inter-observer consistency of the refinements and the time needed to create a full-resolution automatic segmentation were calculated.From the dataset, 85% scored 7-10, and 15% were within 3-6. The average time required for automated segmentation was 1.7 min. Performance metrics indicated an excellent overlap between automatic and refined segmentation with a dice similarity coefficient (DSC) of 99.3%. High inter-observer consistency of refinements was observed, with a 95% Hausdorff distance (HD) of 0.045 mm.The integrated CNN models proved to be fast, accurate, and consistent along with a strong interobserver consistency in creating the MVP.The automated segmentation of these structures simultaneously could act as a valuable tool in clinical orthodontics, implant rehabilitation, and any oral or maxillofacial surgical procedures, where visualization of MVP and its relationship with surrounding structures is a necessity for reaching an accurate diagnosis and patient-specific treatment planning." @default.
- W4296119800 created "2022-09-17" @default.
- W4296119800 creator A5006403349 @default.
- W4296119800 creator A5012860084 @default.
- W4296119800 creator A5030318559 @default.
- W4296119800 creator A5031969153 @default.
- W4296119800 creator A5042940223 @default.
- W4296119800 creator A5057362793 @default.
- W4296119800 creator A5059019485 @default.
- W4296119800 date "2022-09-17" @default.
- W4296119800 modified "2023-10-17" @default.
- W4296119800 title "Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images" @default.
- W4296119800 cites W2028672401 @default.
- W4296119800 cites W2075304274 @default.
- W4296119800 cites W2164777277 @default.
- W4296119800 cites W2806435360 @default.
- W4296119800 cites W2897772195 @default.
- W4296119800 cites W2913461383 @default.
- W4296119800 cites W2967840898 @default.
- W4296119800 cites W2999929466 @default.
- W4296119800 cites W3011152663 @default.
- W4296119800 cites W3021660673 @default.
- W4296119800 cites W3164718072 @default.
- W4296119800 cites W3180693192 @default.
- W4296119800 cites W3193576071 @default.
- W4296119800 cites W3199683118 @default.
- W4296119800 cites W3208829702 @default.
- W4296119800 cites W3209453742 @default.
- W4296119800 cites W3213420920 @default.
- W4296119800 cites W4200356893 @default.
- W4296119800 cites W4205574442 @default.
- W4296119800 cites W4229032171 @default.
- W4296119800 cites W4240195732 @default.
- W4296119800 cites W4286435457 @default.
- W4296119800 doi "https://doi.org/10.1007/s00784-022-04708-2" @default.
- W4296119800 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36114907" @default.
- W4296119800 hasPublicationYear "2022" @default.
- W4296119800 type Work @default.
- W4296119800 citedByCount "2" @default.
- W4296119800 countsByYear W42961198002023 @default.
- W4296119800 crossrefType "journal-article" @default.
- W4296119800 hasAuthorship W4296119800A5006403349 @default.
- W4296119800 hasAuthorship W4296119800A5012860084 @default.
- W4296119800 hasAuthorship W4296119800A5030318559 @default.
- W4296119800 hasAuthorship W4296119800A5031969153 @default.
- W4296119800 hasAuthorship W4296119800A5042940223 @default.
- W4296119800 hasAuthorship W4296119800A5057362793 @default.
- W4296119800 hasAuthorship W4296119800A5059019485 @default.
- W4296119800 hasBestOaLocation W42961198001 @default.
- W4296119800 hasConcept C126838900 @default.
- W4296119800 hasConcept C141898687 @default.
- W4296119800 hasConcept C153180895 @default.
- W4296119800 hasConcept C154945302 @default.
- W4296119800 hasConcept C2776436953 @default.
- W4296119800 hasConcept C2779813781 @default.
- W4296119800 hasConcept C31972630 @default.
- W4296119800 hasConcept C36464697 @default.
- W4296119800 hasConcept C41008148 @default.
- W4296119800 hasConcept C544519230 @default.
- W4296119800 hasConcept C71924100 @default.
- W4296119800 hasConcept C81363708 @default.
- W4296119800 hasConcept C89600930 @default.
- W4296119800 hasConceptScore W4296119800C126838900 @default.
- W4296119800 hasConceptScore W4296119800C141898687 @default.
- W4296119800 hasConceptScore W4296119800C153180895 @default.
- W4296119800 hasConceptScore W4296119800C154945302 @default.
- W4296119800 hasConceptScore W4296119800C2776436953 @default.
- W4296119800 hasConceptScore W4296119800C2779813781 @default.
- W4296119800 hasConceptScore W4296119800C31972630 @default.
- W4296119800 hasConceptScore W4296119800C36464697 @default.
- W4296119800 hasConceptScore W4296119800C41008148 @default.
- W4296119800 hasConceptScore W4296119800C544519230 @default.
- W4296119800 hasConceptScore W4296119800C71924100 @default.
- W4296119800 hasConceptScore W4296119800C81363708 @default.
- W4296119800 hasConceptScore W4296119800C89600930 @default.
- W4296119800 hasFunder F4320322315 @default.
- W4296119800 hasIssue "3" @default.
- W4296119800 hasLocation W42961198001 @default.
- W4296119800 hasLocation W42961198002 @default.
- W4296119800 hasLocation W42961198003 @default.
- W4296119800 hasLocation W42961198004 @default.
- W4296119800 hasOpenAccess W4296119800 @default.
- W4296119800 hasPrimaryLocation W42961198001 @default.
- W4296119800 hasRelatedWork W1669643531 @default.
- W4296119800 hasRelatedWork W1982826852 @default.
- W4296119800 hasRelatedWork W2005437358 @default.
- W4296119800 hasRelatedWork W2008656436 @default.
- W4296119800 hasRelatedWork W2023558673 @default.
- W4296119800 hasRelatedWork W2110230079 @default.
- W4296119800 hasRelatedWork W2134924024 @default.
- W4296119800 hasRelatedWork W2517104666 @default.
- W4296119800 hasRelatedWork W2613186388 @default.
- W4296119800 hasRelatedWork W1967061043 @default.
- W4296119800 hasVolume "27" @default.
- W4296119800 isParatext "false" @default.
- W4296119800 isRetracted "false" @default.
- W4296119800 workType "article" @default.