Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296122893> ?p ?o ?g. }
- W4296122893 endingPage "110585" @default.
- W4296122893 startingPage "110585" @default.
- W4296122893 abstract "This paper addresses Lyapunov characterizations on input-to-state stability (ISS) of time-varying nonlinear systems with infinite delays. With novel ISS definitions in the case of nonlinear systems with infinite delays, we present several results on their ISS Lyapunov characterizations in the form of both ISS Lyapunov theorems and converse ISS Lyapunov theorems. It is shown that an infinite-delayed system is (locally) ISS if it has a (local) ISS Lyapunov functional, and conversely, there exists a (local) ISS Lyapunov functional if it is (locally) ISS. To prove the converse ISS Lyapunov theorems, we establish a key technical lemma bridging ISS/LISS and robust asymptotic stability of systems with infinite delays and two converse Lyapunov theorems concerning robust asymptotic stability of systems with infinite delays. Two distinctive advantages of this work are that a large class of infinite dimensional spaces are allowed and the results are established based on a more general Lipschitz condition, i.e., the right hand side Lipschitz (RS-L) condition. An example is provided for illustration of the obtained results." @default.
- W4296122893 created "2022-09-17" @default.
- W4296122893 creator A5019201800 @default.
- W4296122893 creator A5049264813 @default.
- W4296122893 creator A5082124101 @default.
- W4296122893 date "2022-12-01" @default.
- W4296122893 modified "2023-10-17" @default.
- W4296122893 title "Lyapunov characterizations on input-to-state stability of nonlinear systems with infinite delays" @default.
- W4296122893 cites W1042426813 @default.
- W4296122893 cites W1982246775 @default.
- W4296122893 cites W1982267787 @default.
- W4296122893 cites W1994797880 @default.
- W4296122893 cites W1997102812 @default.
- W4296122893 cites W2006177202 @default.
- W4296122893 cites W2006544250 @default.
- W4296122893 cites W2014367808 @default.
- W4296122893 cites W2017493230 @default.
- W4296122893 cites W2019949308 @default.
- W4296122893 cites W2027342926 @default.
- W4296122893 cites W2027526023 @default.
- W4296122893 cites W2035905781 @default.
- W4296122893 cites W2035945038 @default.
- W4296122893 cites W2036826525 @default.
- W4296122893 cites W2038137192 @default.
- W4296122893 cites W2055606008 @default.
- W4296122893 cites W2080209002 @default.
- W4296122893 cites W2095196670 @default.
- W4296122893 cites W2098989671 @default.
- W4296122893 cites W2102891752 @default.
- W4296122893 cites W2114735269 @default.
- W4296122893 cites W2131759005 @default.
- W4296122893 cites W2134459671 @default.
- W4296122893 cites W2135410088 @default.
- W4296122893 cites W2146639180 @default.
- W4296122893 cites W2151136609 @default.
- W4296122893 cites W2164212574 @default.
- W4296122893 cites W2164773029 @default.
- W4296122893 cites W2165626406 @default.
- W4296122893 cites W2168166223 @default.
- W4296122893 cites W2177424877 @default.
- W4296122893 cites W2583096043 @default.
- W4296122893 cites W2765173471 @default.
- W4296122893 cites W2807517626 @default.
- W4296122893 cites W2813022217 @default.
- W4296122893 cites W2891296556 @default.
- W4296122893 cites W2953434406 @default.
- W4296122893 cites W2995263931 @default.
- W4296122893 cites W3014335474 @default.
- W4296122893 cites W3098585868 @default.
- W4296122893 cites W402397072 @default.
- W4296122893 doi "https://doi.org/10.1016/j.automatica.2022.110585" @default.
- W4296122893 hasPublicationYear "2022" @default.
- W4296122893 type Work @default.
- W4296122893 citedByCount "0" @default.
- W4296122893 crossrefType "journal-article" @default.
- W4296122893 hasAuthorship W4296122893A5019201800 @default.
- W4296122893 hasAuthorship W4296122893A5049264813 @default.
- W4296122893 hasAuthorship W4296122893A5082124101 @default.
- W4296122893 hasConcept C112972136 @default.
- W4296122893 hasConcept C119857082 @default.
- W4296122893 hasConcept C121332964 @default.
- W4296122893 hasConcept C134306372 @default.
- W4296122893 hasConcept C154945302 @default.
- W4296122893 hasConcept C158622935 @default.
- W4296122893 hasConcept C167964875 @default.
- W4296122893 hasConcept C18903297 @default.
- W4296122893 hasConcept C191544260 @default.
- W4296122893 hasConcept C22324862 @default.
- W4296122893 hasConcept C2524010 @default.
- W4296122893 hasConcept C25854792 @default.
- W4296122893 hasConcept C2775924081 @default.
- W4296122893 hasConcept C2776809875 @default.
- W4296122893 hasConcept C2776829284 @default.
- W4296122893 hasConcept C2777759810 @default.
- W4296122893 hasConcept C28826006 @default.
- W4296122893 hasConcept C33923547 @default.
- W4296122893 hasConcept C37935115 @default.
- W4296122893 hasConcept C41008148 @default.
- W4296122893 hasConcept C41949839 @default.
- W4296122893 hasConcept C46757340 @default.
- W4296122893 hasConcept C47446073 @default.
- W4296122893 hasConcept C60640748 @default.
- W4296122893 hasConcept C62520636 @default.
- W4296122893 hasConcept C86803240 @default.
- W4296122893 hasConceptScore W4296122893C112972136 @default.
- W4296122893 hasConceptScore W4296122893C119857082 @default.
- W4296122893 hasConceptScore W4296122893C121332964 @default.
- W4296122893 hasConceptScore W4296122893C134306372 @default.
- W4296122893 hasConceptScore W4296122893C154945302 @default.
- W4296122893 hasConceptScore W4296122893C158622935 @default.
- W4296122893 hasConceptScore W4296122893C167964875 @default.
- W4296122893 hasConceptScore W4296122893C18903297 @default.
- W4296122893 hasConceptScore W4296122893C191544260 @default.
- W4296122893 hasConceptScore W4296122893C22324862 @default.
- W4296122893 hasConceptScore W4296122893C2524010 @default.
- W4296122893 hasConceptScore W4296122893C25854792 @default.
- W4296122893 hasConceptScore W4296122893C2775924081 @default.
- W4296122893 hasConceptScore W4296122893C2776809875 @default.