Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296122981> ?p ?o ?g. }
- W4296122981 endingPage "779" @default.
- W4296122981 startingPage "770" @default.
- W4296122981 abstract "Lung cancer has been one of the greatest lethal cancers worldwide. Computed Tomograph (CT) makes it possible to diagnose lung cancer at an early stage, which can significantly reduce its mortality. In recent years, deep neural networks (DNN) have been widely used to improve the accuracy of benign and malignant pulmonary nodules classification. But the limitation of DNN approach is that AI model’s performance and generalization highly depend on the size and quality of the training data. With our best knowledge, almost all existing public lung nodule datasets, e.g., LIDC-IDRI, obtain the crucial benign and malignant labels by radiographic analysis, instead of pathological examination. In this paper, we argue that, without pathology report and hence lack of labels’ authenticity, LIDC-IDRI based machine-learning (ML) models are short of generalization. To prove our hypothesis, we introduce a new lung CT image dataset with pathological information (LIDP), for lung cancer screening. LIDP contains 990 samples, including 783 malignant samples and 207 benign samples. More critically, the labels of all samples have been all examined by pathological biopsy. We evaluate various of existing LIDC-based state-of-the-art (SOTA) models on LIDP. Our experimental results show the extreme poor generalization ability of existing SOTA models that are trained on LIDC-IDRI dataset. Our scientific conclusion is striking: the distributions of these datasets are significantly different. We claim that the LIDP dataset is a very valuable addition to the existing datasets like LIDC-IDRI. LIDP can be well used for independent testing or for training new ML models for lung cancer early detection." @default.
- W4296122981 created "2022-09-17" @default.
- W4296122981 creator A5009884211 @default.
- W4296122981 creator A5013518754 @default.
- W4296122981 creator A5016092037 @default.
- W4296122981 creator A5016786663 @default.
- W4296122981 creator A5020748660 @default.
- W4296122981 creator A5021040324 @default.
- W4296122981 creator A5049692788 @default.
- W4296122981 creator A5056168495 @default.
- W4296122981 creator A5057603847 @default.
- W4296122981 creator A5059824709 @default.
- W4296122981 creator A5070483200 @default.
- W4296122981 creator A5075569115 @default.
- W4296122981 creator A5079512975 @default.
- W4296122981 creator A5081389889 @default.
- W4296122981 creator A5081660308 @default.
- W4296122981 creator A5087353780 @default.
- W4296122981 date "2022-01-01" @default.
- W4296122981 modified "2023-10-06" @default.
- W4296122981 title "LIDP: A Lung Image Dataset with Pathological Information for Lung Cancer Screening" @default.
- W4296122981 cites W130099911 @default.
- W4296122981 cites W1978344539 @default.
- W4296122981 cites W1986649315 @default.
- W4296122981 cites W2394599079 @default.
- W4296122981 cites W2561512519 @default.
- W4296122981 cites W2587787457 @default.
- W4296122981 cites W2611213375 @default.
- W4296122981 cites W2753801833 @default.
- W4296122981 cites W2766353760 @default.
- W4296122981 cites W2769848455 @default.
- W4296122981 cites W2794187429 @default.
- W4296122981 cites W2888848380 @default.
- W4296122981 cites W2907845095 @default.
- W4296122981 cites W2910031061 @default.
- W4296122981 cites W2941706909 @default.
- W4296122981 cites W2957352479 @default.
- W4296122981 cites W2979708147 @default.
- W4296122981 cites W2995323791 @default.
- W4296122981 cites W3016967415 @default.
- W4296122981 cites W3087889038 @default.
- W4296122981 cites W3119642930 @default.
- W4296122981 cites W3128646645 @default.
- W4296122981 doi "https://doi.org/10.1007/978-3-031-16437-8_74" @default.
- W4296122981 hasPublicationYear "2022" @default.
- W4296122981 type Work @default.
- W4296122981 citedByCount "2" @default.
- W4296122981 countsByYear W42961229812022 @default.
- W4296122981 crossrefType "book-chapter" @default.
- W4296122981 hasAuthorship W4296122981A5009884211 @default.
- W4296122981 hasAuthorship W4296122981A5013518754 @default.
- W4296122981 hasAuthorship W4296122981A5016092037 @default.
- W4296122981 hasAuthorship W4296122981A5016786663 @default.
- W4296122981 hasAuthorship W4296122981A5020748660 @default.
- W4296122981 hasAuthorship W4296122981A5021040324 @default.
- W4296122981 hasAuthorship W4296122981A5049692788 @default.
- W4296122981 hasAuthorship W4296122981A5056168495 @default.
- W4296122981 hasAuthorship W4296122981A5057603847 @default.
- W4296122981 hasAuthorship W4296122981A5059824709 @default.
- W4296122981 hasAuthorship W4296122981A5070483200 @default.
- W4296122981 hasAuthorship W4296122981A5075569115 @default.
- W4296122981 hasAuthorship W4296122981A5079512975 @default.
- W4296122981 hasAuthorship W4296122981A5081389889 @default.
- W4296122981 hasAuthorship W4296122981A5081660308 @default.
- W4296122981 hasAuthorship W4296122981A5087353780 @default.
- W4296122981 hasConcept C119857082 @default.
- W4296122981 hasConcept C126322002 @default.
- W4296122981 hasConcept C126838900 @default.
- W4296122981 hasConcept C134306372 @default.
- W4296122981 hasConcept C142724271 @default.
- W4296122981 hasConcept C151730666 @default.
- W4296122981 hasConcept C153180895 @default.
- W4296122981 hasConcept C154945302 @default.
- W4296122981 hasConcept C177148314 @default.
- W4296122981 hasConcept C207886595 @default.
- W4296122981 hasConcept C2776256026 @default.
- W4296122981 hasConcept C2776731575 @default.
- W4296122981 hasConcept C2777714996 @default.
- W4296122981 hasConcept C33923547 @default.
- W4296122981 hasConcept C41008148 @default.
- W4296122981 hasConcept C71924100 @default.
- W4296122981 hasConcept C86803240 @default.
- W4296122981 hasConceptScore W4296122981C119857082 @default.
- W4296122981 hasConceptScore W4296122981C126322002 @default.
- W4296122981 hasConceptScore W4296122981C126838900 @default.
- W4296122981 hasConceptScore W4296122981C134306372 @default.
- W4296122981 hasConceptScore W4296122981C142724271 @default.
- W4296122981 hasConceptScore W4296122981C151730666 @default.
- W4296122981 hasConceptScore W4296122981C153180895 @default.
- W4296122981 hasConceptScore W4296122981C154945302 @default.
- W4296122981 hasConceptScore W4296122981C177148314 @default.
- W4296122981 hasConceptScore W4296122981C207886595 @default.
- W4296122981 hasConceptScore W4296122981C2776256026 @default.
- W4296122981 hasConceptScore W4296122981C2776731575 @default.
- W4296122981 hasConceptScore W4296122981C2777714996 @default.
- W4296122981 hasConceptScore W4296122981C33923547 @default.
- W4296122981 hasConceptScore W4296122981C41008148 @default.
- W4296122981 hasConceptScore W4296122981C71924100 @default.