Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296127489> ?p ?o ?g. }
- W4296127489 endingPage "102707" @default.
- W4296127489 startingPage "102707" @default.
- W4296127489 abstract "Long term energy requirement forecast is necessary for any policy decisions concerning management of resources and its expansions. Numerous works have been reported in the past which primarily focus on short or medium term forecasts which are not adequate for policy decision for the future. The long term forecasts requires a different approach due to the fact that the future trends on energy requirements are uncertain. This study proposes a long-term energy requirement forecast (upto 2030) using Artificial Neural Network (ANN) by correlating the relationship between the trend in the Gross Domestic Product (GDP) and energy demand, and the results are reported in a probabilistic sense by considering the best fitting probability distribution function. The proposed method is applied to the energy requirement data of five different States of India for 13 years (2008–2020). The forecast of future energy requirements and exceedance probability is estimated and discussed by considering 4 different scenarios from no change in trend to 25 % increase. Statistical assessment is done for three different probability distributions and is tested by goodness-of-fit tests namely, the Kolmogorov-Smirnov test, Anderson-Darling test and Chi-squared test to find the best probability fit. It is seen that Johnson SB distribution best fits the data of combined Andhra Pradesh and Telangana, Generalized Extreme Value distribution for the data of Karnataka, Kerala and Tamil Nadu, whereas Kumarasamy distribution best fits the data of Puducherry. In addition, based on a rank of goodness-of-fit tests, it can be concluded that 97 % minimum exceedance probability condition is maintained for overall states under four different conditions. It is concluded that the States will be able to meet the average energy requirement with minimal policy intervention for all the 10 % scenario whereas for the other scenarios a careful policy change may be required to create avenue for energy generation. However, there is only 1 % to 5 % exceedance probability for the 15 % scenario." @default.
- W4296127489 created "2022-09-17" @default.
- W4296127489 creator A5017613497 @default.
- W4296127489 creator A5049113844 @default.
- W4296127489 creator A5071691169 @default.
- W4296127489 date "2022-10-01" @default.
- W4296127489 modified "2023-09-26" @default.
- W4296127489 title "Long term monthly prediction of energy requirements from a probabilistic perspective - A case study in southern States of India" @default.
- W4296127489 cites W1781780829 @default.
- W4296127489 cites W1966822153 @default.
- W4296127489 cites W1993355592 @default.
- W4296127489 cites W2000910899 @default.
- W4296127489 cites W2003989464 @default.
- W4296127489 cites W2006966040 @default.
- W4296127489 cites W2007017967 @default.
- W4296127489 cites W2201221078 @default.
- W4296127489 cites W2209764198 @default.
- W4296127489 cites W2566003805 @default.
- W4296127489 cites W2590910929 @default.
- W4296127489 cites W2591180046 @default.
- W4296127489 cites W2591494037 @default.
- W4296127489 cites W2735045459 @default.
- W4296127489 cites W2750021257 @default.
- W4296127489 cites W2795242388 @default.
- W4296127489 cites W2799800871 @default.
- W4296127489 cites W2804478270 @default.
- W4296127489 cites W2884234184 @default.
- W4296127489 cites W2891070256 @default.
- W4296127489 cites W2893898383 @default.
- W4296127489 cites W2895418405 @default.
- W4296127489 cites W2899498005 @default.
- W4296127489 cites W2901561881 @default.
- W4296127489 cites W2911808253 @default.
- W4296127489 cites W2911933099 @default.
- W4296127489 cites W2915043045 @default.
- W4296127489 cites W2947742262 @default.
- W4296127489 cites W2956797857 @default.
- W4296127489 cites W2960789518 @default.
- W4296127489 cites W3004141076 @default.
- W4296127489 cites W3007333818 @default.
- W4296127489 cites W3009778813 @default.
- W4296127489 cites W3013905067 @default.
- W4296127489 cites W3024458572 @default.
- W4296127489 cites W3035970024 @default.
- W4296127489 cites W3036736429 @default.
- W4296127489 cites W3045185452 @default.
- W4296127489 cites W3084139625 @default.
- W4296127489 cites W3084941074 @default.
- W4296127489 cites W3110772809 @default.
- W4296127489 cites W3111499033 @default.
- W4296127489 cites W3114571338 @default.
- W4296127489 cites W3135039877 @default.
- W4296127489 cites W3138758700 @default.
- W4296127489 cites W3161625306 @default.
- W4296127489 cites W3162052849 @default.
- W4296127489 cites W3183326615 @default.
- W4296127489 cites W3210123833 @default.
- W4296127489 cites W4220917842 @default.
- W4296127489 doi "https://doi.org/10.1016/j.seta.2022.102707" @default.
- W4296127489 hasPublicationYear "2022" @default.
- W4296127489 type Work @default.
- W4296127489 citedByCount "0" @default.
- W4296127489 crossrefType "journal-article" @default.
- W4296127489 hasAuthorship W4296127489A5017613497 @default.
- W4296127489 hasAuthorship W4296127489A5049113844 @default.
- W4296127489 hasAuthorship W4296127489A5071691169 @default.
- W4296127489 hasConcept C105795698 @default.
- W4296127489 hasConcept C121332964 @default.
- W4296127489 hasConcept C132480984 @default.
- W4296127489 hasConcept C149441793 @default.
- W4296127489 hasConcept C149782125 @default.
- W4296127489 hasConcept C186370098 @default.
- W4296127489 hasConcept C33923547 @default.
- W4296127489 hasConcept C49937458 @default.
- W4296127489 hasConcept C61797465 @default.
- W4296127489 hasConcept C62520636 @default.
- W4296127489 hasConceptScore W4296127489C105795698 @default.
- W4296127489 hasConceptScore W4296127489C121332964 @default.
- W4296127489 hasConceptScore W4296127489C132480984 @default.
- W4296127489 hasConceptScore W4296127489C149441793 @default.
- W4296127489 hasConceptScore W4296127489C149782125 @default.
- W4296127489 hasConceptScore W4296127489C186370098 @default.
- W4296127489 hasConceptScore W4296127489C33923547 @default.
- W4296127489 hasConceptScore W4296127489C49937458 @default.
- W4296127489 hasConceptScore W4296127489C61797465 @default.
- W4296127489 hasConceptScore W4296127489C62520636 @default.
- W4296127489 hasLocation W42961274891 @default.
- W4296127489 hasOpenAccess W4296127489 @default.
- W4296127489 hasPrimaryLocation W42961274891 @default.
- W4296127489 hasRelatedWork W1481135028 @default.
- W4296127489 hasRelatedWork W1858006885 @default.
- W4296127489 hasRelatedWork W2104089427 @default.
- W4296127489 hasRelatedWork W2341211956 @default.
- W4296127489 hasRelatedWork W2562559905 @default.
- W4296127489 hasRelatedWork W3193668555 @default.
- W4296127489 hasRelatedWork W337408856 @default.
- W4296127489 hasRelatedWork W4200048066 @default.
- W4296127489 hasRelatedWork W2182642422 @default.