Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296130596> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4296130596 abstract "Abstract Inferring gene regulatory networks (GRNs) from single-cell gene expression datasets is a challenging task. Existing methods are often designed heuristically for specific datasets and lack the flexibility to incorporate additional information or compare against other algorithms. Further, current GRN inference methods do not provide uncertainty estimates with respect to the interactions that they predict, making inferred networks challenging to interpret. To overcome these challenges, we introduce Probabilistic Matrix Factorization for Gene Regulatory Network inference (PMF-GRN). PMF-GRN uses single-cell gene expression data to learn latent factors representing transcription factor activity as well as regulatory relationships between transcription factors and their target genes. This approach incorporates available experimental evidence into prior distributions over latent factors and scales well to single-cell gene expression datasets. By utilizing variational inference, we facilitate hyperparameter search for principled model selection and direct comparison to other generative models. To assess the accuracy of our method, we evaluate PMF-GRN using the model organisms Saccharomyces cerevisiae and Bacillus subtilis , benchmarking against database-derived gold standard interactions. We discover that, on average, PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods. Moreover, our PMF-GRN approach offers well-calibrated uncertainty estimates, as it performs gene regulatory network (GRN) inference in a probabilistic setting. These estimates are valuable for validation purposes, particularly when validated interactions are limited or a gold standard is incomplete." @default.
- W4296130596 created "2022-09-17" @default.
- W4296130596 creator A5017278409 @default.
- W4296130596 creator A5054283956 @default.
- W4296130596 creator A5055203249 @default.
- W4296130596 creator A5069024112 @default.
- W4296130596 date "2022-09-12" @default.
- W4296130596 modified "2023-10-17" @default.
- W4296130596 title "A Variational Inference Approach to Single-Cell Gene Regulatory Network Inference using Probabilistic Matrix Factorization" @default.
- W4296130596 cites W1993418188 @default.
- W4296130596 cites W2062029454 @default.
- W4296130596 cites W2076513103 @default.
- W4296130596 cites W2153208554 @default.
- W4296130596 cites W2156508863 @default.
- W4296130596 cites W2223984211 @default.
- W4296130596 cites W2759304130 @default.
- W4296130596 cites W2762699776 @default.
- W4296130596 cites W2926010705 @default.
- W4296130596 cites W2978955949 @default.
- W4296130596 cites W3003223963 @default.
- W4296130596 cites W3026985819 @default.
- W4296130596 cites W3040659066 @default.
- W4296130596 cites W3159699835 @default.
- W4296130596 cites W3204362007 @default.
- W4296130596 cites W3205726857 @default.
- W4296130596 cites W4319591822 @default.
- W4296130596 cites W62564358 @default.
- W4296130596 doi "https://doi.org/10.1101/2022.09.09.507305" @default.
- W4296130596 hasPublicationYear "2022" @default.
- W4296130596 type Work @default.
- W4296130596 citedByCount "0" @default.
- W4296130596 crossrefType "posted-content" @default.
- W4296130596 hasAuthorship W4296130596A5017278409 @default.
- W4296130596 hasAuthorship W4296130596A5054283956 @default.
- W4296130596 hasAuthorship W4296130596A5055203249 @default.
- W4296130596 hasAuthorship W4296130596A5069024112 @default.
- W4296130596 hasBestOaLocation W42961305961 @default.
- W4296130596 hasConcept C104317684 @default.
- W4296130596 hasConcept C119857082 @default.
- W4296130596 hasConcept C121332964 @default.
- W4296130596 hasConcept C124101348 @default.
- W4296130596 hasConcept C150194340 @default.
- W4296130596 hasConcept C154945302 @default.
- W4296130596 hasConcept C158693339 @default.
- W4296130596 hasConcept C2776214188 @default.
- W4296130596 hasConcept C41008148 @default.
- W4296130596 hasConcept C42355184 @default.
- W4296130596 hasConcept C49937458 @default.
- W4296130596 hasConcept C55493867 @default.
- W4296130596 hasConcept C62520636 @default.
- W4296130596 hasConcept C67339327 @default.
- W4296130596 hasConcept C86803240 @default.
- W4296130596 hasConceptScore W4296130596C104317684 @default.
- W4296130596 hasConceptScore W4296130596C119857082 @default.
- W4296130596 hasConceptScore W4296130596C121332964 @default.
- W4296130596 hasConceptScore W4296130596C124101348 @default.
- W4296130596 hasConceptScore W4296130596C150194340 @default.
- W4296130596 hasConceptScore W4296130596C154945302 @default.
- W4296130596 hasConceptScore W4296130596C158693339 @default.
- W4296130596 hasConceptScore W4296130596C2776214188 @default.
- W4296130596 hasConceptScore W4296130596C41008148 @default.
- W4296130596 hasConceptScore W4296130596C42355184 @default.
- W4296130596 hasConceptScore W4296130596C49937458 @default.
- W4296130596 hasConceptScore W4296130596C55493867 @default.
- W4296130596 hasConceptScore W4296130596C62520636 @default.
- W4296130596 hasConceptScore W4296130596C67339327 @default.
- W4296130596 hasConceptScore W4296130596C86803240 @default.
- W4296130596 hasLocation W42961305961 @default.
- W4296130596 hasOpenAccess W4296130596 @default.
- W4296130596 hasPrimaryLocation W42961305961 @default.
- W4296130596 hasRelatedWork W2103858997 @default.
- W4296130596 hasRelatedWork W2149021950 @default.
- W4296130596 hasRelatedWork W2156508863 @default.
- W4296130596 hasRelatedWork W2511279186 @default.
- W4296130596 hasRelatedWork W2963058055 @default.
- W4296130596 hasRelatedWork W2969742128 @default.
- W4296130596 hasRelatedWork W4200067116 @default.
- W4296130596 hasRelatedWork W4290996199 @default.
- W4296130596 hasRelatedWork W4293374943 @default.
- W4296130596 hasRelatedWork W4296130596 @default.
- W4296130596 isParatext "false" @default.
- W4296130596 isRetracted "false" @default.
- W4296130596 workType "article" @default.