Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296131320> ?p ?o ?g. }
- W4296131320 endingPage "2324" @default.
- W4296131320 startingPage "2305" @default.
- W4296131320 abstract "In structural health monitoring (SHM), damage detection is a final target to know the real status of the objective structure. Vibration-based damage detection is a commonly used method, since it makes full use of the dynamic characteristics. Improving the efficiency of this kind of methods has attracted increasing attentions. The existing uncertainty of identified modal parameters using measured data may significantly affect the detection accuracy. Furthermore, an optimization algorithm with a better convergence speed can improve the detection accuracy and reduce the computational time. This article presents the work to develop a novel damage detection method based on fundamental Bayesian two-stage model and sparse regularization. In this method, the most probable value of modal parameters and the associated posterior uncertainty are combined to investigate the effect of uncertainty on damage detection. The usage of the sparse regularization in the objective function can decrease the complexity of modeling and avoid the overfitting problem. A machine learning method combining intelligent swarm optimization algorithm with K-means clustering was used to carry out the optimization. Finally, a method combining three existing theory, that is, fundamental Bayesian two-stage model, sparse regularization, and I-Jaya algorithm, was developed. To investigate the efficiency of the proposed method, the traditional objective functions with and without the sparse regularization were also used for the comparison. The proposed method was verified by an ASCE benchmark example, and then it is applied into an experimental structure. The results show that due to the consideration of uncertainty, the objective function based on the fundamental Bayesian model and sparse regularization has a better performance." @default.
- W4296131320 created "2022-09-17" @default.
- W4296131320 creator A5004328892 @default.
- W4296131320 creator A5009419038 @default.
- W4296131320 creator A5024479846 @default.
- W4296131320 creator A5057798196 @default.
- W4296131320 creator A5077671932 @default.
- W4296131320 date "2022-09-15" @default.
- W4296131320 modified "2023-09-28" @default.
- W4296131320 title "Structural damage detection based on fundamental Bayesian two-stage model considering the modal parameters uncertainty" @default.
- W4296131320 cites W1131737499 @default.
- W4296131320 cites W1502949418 @default.
- W4296131320 cites W1589046910 @default.
- W4296131320 cites W1973263387 @default.
- W4296131320 cites W1975640173 @default.
- W4296131320 cites W1986512036 @default.
- W4296131320 cites W1992419399 @default.
- W4296131320 cites W2024018375 @default.
- W4296131320 cites W2024292495 @default.
- W4296131320 cites W2038817616 @default.
- W4296131320 cites W2048318470 @default.
- W4296131320 cites W2049690837 @default.
- W4296131320 cites W2064633509 @default.
- W4296131320 cites W2069229428 @default.
- W4296131320 cites W2083099298 @default.
- W4296131320 cites W2083277166 @default.
- W4296131320 cites W2092141692 @default.
- W4296131320 cites W2097912000 @default.
- W4296131320 cites W2116326094 @default.
- W4296131320 cites W2159357605 @default.
- W4296131320 cites W2166670624 @default.
- W4296131320 cites W2221175250 @default.
- W4296131320 cites W2507327712 @default.
- W4296131320 cites W2519696972 @default.
- W4296131320 cites W2536919083 @default.
- W4296131320 cites W2560658395 @default.
- W4296131320 cites W2565315795 @default.
- W4296131320 cites W2593863317 @default.
- W4296131320 cites W2606382887 @default.
- W4296131320 cites W2610223059 @default.
- W4296131320 cites W2649640265 @default.
- W4296131320 cites W2754358426 @default.
- W4296131320 cites W2766852097 @default.
- W4296131320 cites W2791125991 @default.
- W4296131320 cites W2810064848 @default.
- W4296131320 cites W2896445596 @default.
- W4296131320 cites W2950956319 @default.
- W4296131320 cites W2953605673 @default.
- W4296131320 cites W2998598185 @default.
- W4296131320 cites W3153751785 @default.
- W4296131320 cites W3164172623 @default.
- W4296131320 cites W3172623435 @default.
- W4296131320 cites W4288264770 @default.
- W4296131320 doi "https://doi.org/10.1177/14759217221114262" @default.
- W4296131320 hasPublicationYear "2022" @default.
- W4296131320 type Work @default.
- W4296131320 citedByCount "0" @default.
- W4296131320 crossrefType "journal-article" @default.
- W4296131320 hasAuthorship W4296131320A5004328892 @default.
- W4296131320 hasAuthorship W4296131320A5009419038 @default.
- W4296131320 hasAuthorship W4296131320A5024479846 @default.
- W4296131320 hasAuthorship W4296131320A5057798196 @default.
- W4296131320 hasAuthorship W4296131320A5077671932 @default.
- W4296131320 hasConcept C107673813 @default.
- W4296131320 hasConcept C11413529 @default.
- W4296131320 hasConcept C124101348 @default.
- W4296131320 hasConcept C126255220 @default.
- W4296131320 hasConcept C127413603 @default.
- W4296131320 hasConcept C13280743 @default.
- W4296131320 hasConcept C154945302 @default.
- W4296131320 hasConcept C185592680 @default.
- W4296131320 hasConcept C185798385 @default.
- W4296131320 hasConcept C188027245 @default.
- W4296131320 hasConcept C205649164 @default.
- W4296131320 hasConcept C22019652 @default.
- W4296131320 hasConcept C2776135515 @default.
- W4296131320 hasConcept C2776247918 @default.
- W4296131320 hasConcept C33923547 @default.
- W4296131320 hasConcept C41008148 @default.
- W4296131320 hasConcept C50644808 @default.
- W4296131320 hasConcept C66938386 @default.
- W4296131320 hasConcept C71139939 @default.
- W4296131320 hasConcept C73555534 @default.
- W4296131320 hasConceptScore W4296131320C107673813 @default.
- W4296131320 hasConceptScore W4296131320C11413529 @default.
- W4296131320 hasConceptScore W4296131320C124101348 @default.
- W4296131320 hasConceptScore W4296131320C126255220 @default.
- W4296131320 hasConceptScore W4296131320C127413603 @default.
- W4296131320 hasConceptScore W4296131320C13280743 @default.
- W4296131320 hasConceptScore W4296131320C154945302 @default.
- W4296131320 hasConceptScore W4296131320C185592680 @default.
- W4296131320 hasConceptScore W4296131320C185798385 @default.
- W4296131320 hasConceptScore W4296131320C188027245 @default.
- W4296131320 hasConceptScore W4296131320C205649164 @default.
- W4296131320 hasConceptScore W4296131320C22019652 @default.
- W4296131320 hasConceptScore W4296131320C2776135515 @default.
- W4296131320 hasConceptScore W4296131320C2776247918 @default.
- W4296131320 hasConceptScore W4296131320C33923547 @default.