Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296142914> ?p ?o ?g. }
- W4296142914 endingPage "103263" @default.
- W4296142914 startingPage "103263" @default.
- W4296142914 abstract "Schizophrenia affects patients and their families and society because of chronic impairments in cognition, behavior, and emotion. However, its clinical diagnosis mainly depends on the clinicians' knowledge of the patients' symptoms. Other auxiliary diagnostic methods such as MRI and EEG are cumbersome and time-consuming. Recently, the convolutional neural network (CNN) has been applied to the auxiliary diagnosis of psychiatry. Hence, in this study, a method based on deep learning and facial videos is proposed for the rapid detection of schizophrenia. Herein, 125 videos from 125 schizophrenic patients and 75 videos from 75 healthy controls based on emotional stimulation tasks were obtained. The video preprocessing included the experiment clips extraction, face detection, facial region cropping, resizing to 500 × 500 pixel size, and uniform sampling of 100 frames. The preprocessed facial videos were used to train the Resnet18_3D. We utilized ten-fold cross-validation, and held-out testing set to evaluate the model with the accuracy, the precision, the sensitivity, the specificity, the balanced accuracy, and the AUC. The Resnet18_3D trained on Film_order achieved the best performance with accuracy, sensitivity, specificity, balanced accuracy, and AUC of 89.00%, 96.80%, 76.00%, 86.40% and 0.9397. The neural network model indeed recognizes healthy controls and schizophrenic patients through the changes in the area of the face. The results show that facial video under emotional stimulation can be used to classify schizophrenic patients and help clinicians with diagnosis in the clinical environment. Among the different types of stimuli, the video stimuli with fixed emotional order showed the best classification performance." @default.
- W4296142914 created "2022-09-17" @default.
- W4296142914 creator A5006655764 @default.
- W4296142914 creator A5012220672 @default.
- W4296142914 creator A5012816071 @default.
- W4296142914 creator A5031035130 @default.
- W4296142914 creator A5041346888 @default.
- W4296142914 creator A5049191661 @default.
- W4296142914 creator A5058121794 @default.
- W4296142914 date "2022-11-01" @default.
- W4296142914 modified "2023-10-03" @default.
- W4296142914 title "Automatic recognition of schizophrenia from facial videos using 3D convolutional neural network" @default.
- W4296142914 cites W1568263921 @default.
- W4296142914 cites W1967052544 @default.
- W4296142914 cites W1972300307 @default.
- W4296142914 cites W1973184605 @default.
- W4296142914 cites W1997541854 @default.
- W4296142914 cites W2011674594 @default.
- W4296142914 cites W2057409323 @default.
- W4296142914 cites W2079655497 @default.
- W4296142914 cites W2097709291 @default.
- W4296142914 cites W2098667423 @default.
- W4296142914 cites W2100636255 @default.
- W4296142914 cites W2104787607 @default.
- W4296142914 cites W2108831282 @default.
- W4296142914 cites W2114985586 @default.
- W4296142914 cites W2141704087 @default.
- W4296142914 cites W2144140957 @default.
- W4296142914 cites W2146376820 @default.
- W4296142914 cites W2159668072 @default.
- W4296142914 cites W2163628998 @default.
- W4296142914 cites W2168031754 @default.
- W4296142914 cites W2170422206 @default.
- W4296142914 cites W2194775991 @default.
- W4296142914 cites W2343280931 @default.
- W4296142914 cites W2404901863 @default.
- W4296142914 cites W2480195998 @default.
- W4296142914 cites W2578887833 @default.
- W4296142914 cites W2658181905 @default.
- W4296142914 cites W2887057293 @default.
- W4296142914 cites W2895654086 @default.
- W4296142914 cites W2904763455 @default.
- W4296142914 cites W2912501419 @default.
- W4296142914 cites W2936793067 @default.
- W4296142914 cites W2944204681 @default.
- W4296142914 cites W2950049130 @default.
- W4296142914 cites W2962858109 @default.
- W4296142914 cites W2963568316 @default.
- W4296142914 cites W2971972352 @default.
- W4296142914 cites W2973151618 @default.
- W4296142914 cites W2985667620 @default.
- W4296142914 cites W2986567973 @default.
- W4296142914 cites W3003442092 @default.
- W4296142914 cites W3016990543 @default.
- W4296142914 cites W3160705766 @default.
- W4296142914 cites W321425376 @default.
- W4296142914 cites W3214575521 @default.
- W4296142914 cites W4200614805 @default.
- W4296142914 cites W4225989011 @default.
- W4296142914 doi "https://doi.org/10.1016/j.ajp.2022.103263" @default.
- W4296142914 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36152565" @default.
- W4296142914 hasPublicationYear "2022" @default.
- W4296142914 type Work @default.
- W4296142914 citedByCount "3" @default.
- W4296142914 countsByYear W42961429142023 @default.
- W4296142914 crossrefType "journal-article" @default.
- W4296142914 hasAuthorship W4296142914A5006655764 @default.
- W4296142914 hasAuthorship W4296142914A5012220672 @default.
- W4296142914 hasAuthorship W4296142914A5012816071 @default.
- W4296142914 hasAuthorship W4296142914A5031035130 @default.
- W4296142914 hasAuthorship W4296142914A5041346888 @default.
- W4296142914 hasAuthorship W4296142914A5049191661 @default.
- W4296142914 hasAuthorship W4296142914A5058121794 @default.
- W4296142914 hasConcept C153180895 @default.
- W4296142914 hasConcept C154945302 @default.
- W4296142914 hasConcept C15744967 @default.
- W4296142914 hasConcept C177264268 @default.
- W4296142914 hasConcept C199360897 @default.
- W4296142914 hasConcept C2776412080 @default.
- W4296142914 hasConcept C34736171 @default.
- W4296142914 hasConcept C41008148 @default.
- W4296142914 hasConcept C548259974 @default.
- W4296142914 hasConcept C71924100 @default.
- W4296142914 hasConcept C81363708 @default.
- W4296142914 hasConceptScore W4296142914C153180895 @default.
- W4296142914 hasConceptScore W4296142914C154945302 @default.
- W4296142914 hasConceptScore W4296142914C15744967 @default.
- W4296142914 hasConceptScore W4296142914C177264268 @default.
- W4296142914 hasConceptScore W4296142914C199360897 @default.
- W4296142914 hasConceptScore W4296142914C2776412080 @default.
- W4296142914 hasConceptScore W4296142914C34736171 @default.
- W4296142914 hasConceptScore W4296142914C41008148 @default.
- W4296142914 hasConceptScore W4296142914C548259974 @default.
- W4296142914 hasConceptScore W4296142914C71924100 @default.
- W4296142914 hasConceptScore W4296142914C81363708 @default.
- W4296142914 hasLocation W42961429141 @default.
- W4296142914 hasLocation W42961429142 @default.
- W4296142914 hasOpenAccess W4296142914 @default.