Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296168220> ?p ?o ?g. }
- W4296168220 abstract "The emission peak and carbon neutrality targets pose a great challenge to carbon emission reduction in the coal industry, and the coal industry will face an all-around deep adjustment. The forecast of coal price is crucial for reducing carbon emissions in the coal industry in an orderly manner under the premise of ensuring national energy security. The volatility and instability of coal prices are a result of multiple influencing factors, making it very difficult to make accurate predictions of coal price changes. We propose in this paper an innovative hybrid forecasting method (CEEMDAN-GWO-CatBoost) for forecasting coal price indexes by combining machine learning models, feature selections, data decomposition, and model interpretation. By combining high forecasting accuracy with good interpretability, this method fills a gap in the field of coal price forecasting. Initially, we examine the factors that influence coal prices from five angles: Supply, demand, macroeconomic factors, freight costs, and substitutes; and we employ Spearman correlation analysis to reduce the complexity of the attribute set and devise a coal price forecasting index system. Secondly, the CEEMDAN method is used to decompose the raw coal price index data into seven intrinsic modal functions and one residual term in order to weaken the volatility of the data caused by complex factors. Next, the CatBoost model hyperparameters are optimized using the Grey Wolf Optimizer algorithm, while the coal price data is fed into the combined forecasting model. Lastly, the SHAP interpretation method is introduced for studying the important indicators affecting coal prices. The experimental results show that the combined CEEMDAN-GWO-CatBoost forecasting model proposed in this paper has significantly better forecasting performance than other comparative models, and the SHAP method employed in this study identifies the macroeconomic environment, freight costs, and coal import volume as significant factors affecting coal prices. As part of the contribution of this paper, specific recommendations are made to the government regarding the formulation of a regulatory policy for the coal industry in the context of carbon neutrality based on the findings of this research." @default.
- W4296168220 created "2022-09-18" @default.
- W4296168220 creator A5044936528 @default.
- W4296168220 creator A5047870138 @default.
- W4296168220 creator A5063083947 @default.
- W4296168220 creator A5081592991 @default.
- W4296168220 date "2022-09-12" @default.
- W4296168220 modified "2023-09-30" @default.
- W4296168220 title "A Study on China coal Price forecasting based on CEEMDAN-GWO-CatBoost hybrid forecasting model under Carbon Neutral Target" @default.
- W4296168220 cites W1980462675 @default.
- W4296168220 cites W2007221293 @default.
- W4296168220 cites W2021951534 @default.
- W4296168220 cites W2036204439 @default.
- W4296168220 cites W2050878287 @default.
- W4296168220 cites W2061438946 @default.
- W4296168220 cites W2114346379 @default.
- W4296168220 cites W2120390927 @default.
- W4296168220 cites W2120683298 @default.
- W4296168220 cites W2129888542 @default.
- W4296168220 cites W2401688955 @default.
- W4296168220 cites W2514792508 @default.
- W4296168220 cites W2543387907 @default.
- W4296168220 cites W2581822685 @default.
- W4296168220 cites W2782718932 @default.
- W4296168220 cites W2791961911 @default.
- W4296168220 cites W2800437387 @default.
- W4296168220 cites W2892741787 @default.
- W4296168220 cites W2905238323 @default.
- W4296168220 cites W2942063634 @default.
- W4296168220 cites W2963095307 @default.
- W4296168220 cites W2980734766 @default.
- W4296168220 cites W2998869217 @default.
- W4296168220 cites W2999615587 @default.
- W4296168220 cites W3004969894 @default.
- W4296168220 cites W3016104265 @default.
- W4296168220 cites W3025194661 @default.
- W4296168220 cites W3031678578 @default.
- W4296168220 cites W3045826271 @default.
- W4296168220 cites W3086191091 @default.
- W4296168220 cites W3087413156 @default.
- W4296168220 cites W3088079557 @default.
- W4296168220 cites W3119869608 @default.
- W4296168220 cites W3133340472 @default.
- W4296168220 cites W3144142665 @default.
- W4296168220 cites W3165524484 @default.
- W4296168220 cites W3166691928 @default.
- W4296168220 cites W3200097793 @default.
- W4296168220 cites W3205473234 @default.
- W4296168220 cites W3207946173 @default.
- W4296168220 cites W3210858739 @default.
- W4296168220 cites W4205446344 @default.
- W4296168220 cites W4205796913 @default.
- W4296168220 cites W4210280977 @default.
- W4296168220 cites W4210454101 @default.
- W4296168220 cites W4210534053 @default.
- W4296168220 cites W4214735334 @default.
- W4296168220 cites W4220977719 @default.
- W4296168220 cites W4221101909 @default.
- W4296168220 cites W4224903072 @default.
- W4296168220 doi "https://doi.org/10.3389/fenvs.2022.1014021" @default.
- W4296168220 hasPublicationYear "2022" @default.
- W4296168220 type Work @default.
- W4296168220 citedByCount "2" @default.
- W4296168220 countsByYear W42961682202022 @default.
- W4296168220 crossrefType "journal-article" @default.
- W4296168220 hasAuthorship W4296168220A5044936528 @default.
- W4296168220 hasAuthorship W4296168220A5047870138 @default.
- W4296168220 hasAuthorship W4296168220A5063083947 @default.
- W4296168220 hasAuthorship W4296168220A5081592991 @default.
- W4296168220 hasBestOaLocation W42961682201 @default.
- W4296168220 hasConcept C127413603 @default.
- W4296168220 hasConcept C149782125 @default.
- W4296168220 hasConcept C162324750 @default.
- W4296168220 hasConcept C41008148 @default.
- W4296168220 hasConcept C518851703 @default.
- W4296168220 hasConcept C548081761 @default.
- W4296168220 hasConcept C91602232 @default.
- W4296168220 hasConceptScore W4296168220C127413603 @default.
- W4296168220 hasConceptScore W4296168220C149782125 @default.
- W4296168220 hasConceptScore W4296168220C162324750 @default.
- W4296168220 hasConceptScore W4296168220C41008148 @default.
- W4296168220 hasConceptScore W4296168220C518851703 @default.
- W4296168220 hasConceptScore W4296168220C548081761 @default.
- W4296168220 hasConceptScore W4296168220C91602232 @default.
- W4296168220 hasLocation W42961682201 @default.
- W4296168220 hasLocation W42961682202 @default.
- W4296168220 hasOpenAccess W4296168220 @default.
- W4296168220 hasPrimaryLocation W42961682201 @default.
- W4296168220 hasRelatedWork W1498050721 @default.
- W4296168220 hasRelatedWork W2016935869 @default.
- W4296168220 hasRelatedWork W2044646743 @default.
- W4296168220 hasRelatedWork W2065426017 @default.
- W4296168220 hasRelatedWork W2476516598 @default.
- W4296168220 hasRelatedWork W2591392218 @default.
- W4296168220 hasRelatedWork W2595080303 @default.
- W4296168220 hasRelatedWork W2753588648 @default.
- W4296168220 hasRelatedWork W2766274543 @default.
- W4296168220 hasRelatedWork W3090813300 @default.
- W4296168220 hasVolume "10" @default.
- W4296168220 isParatext "false" @default.