Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296180137> ?p ?o ?g. }
- W4296180137 endingPage "103747" @default.
- W4296180137 startingPage "103747" @default.
- W4296180137 abstract "Existing fully convolutional networks (FCNs) - based salient object detection (SOD) methods have achieved great performance by integrating diverse multi-scale context information. However, the performance of context information directly obtained by single dilated convolution has limitations because the introduction of dilated convolution with different filling rates will cause the problem of local information loss, which limits the prediction accuracy of the model. For that, in this paper, a novel Aggregating Dense and Attentional Multi-scale Feature Network (DAMFNet) is designed to generate high-quality feature representations for accurate SOD task. More specifically, we first propose a dense-depth feature exploration (DDFE) module to adequately capture the robust multi-scale and multi-receptive field context information by utilizing parallel integrated convolution (PIC) blocks and dense connections for improving the model ability of locating salient objects and refining object details. Afterwards, we develop a multi-scale channel attention enhancement (MCAE) module to further enhance the selection of the salient objects information in the feature channels by integrating multiple attentional features with diverse perspectives. The proposed DAMFNet method has been broadly evaluated on five public SOD benchmark datasets and the extensive experimental results demonstrate that our DAMFNet method has superior advantages compared to 18 state-of-the-art SOD methods under different evaluation metrics." @default.
- W4296180137 created "2022-09-18" @default.
- W4296180137 creator A5022154207 @default.
- W4296180137 creator A5033351506 @default.
- W4296180137 creator A5063188437 @default.
- W4296180137 creator A5068221881 @default.
- W4296180137 creator A5085833222 @default.
- W4296180137 creator A5087739571 @default.
- W4296180137 date "2022-10-01" @default.
- W4296180137 modified "2023-10-17" @default.
- W4296180137 title "Aggregating dense and attentional multi-scale feature network for salient object detection" @default.
- W4296180137 cites W1978479866 @default.
- W4296180137 cites W2011900468 @default.
- W4296180137 cites W2098702446 @default.
- W4296180137 cites W2132083787 @default.
- W4296180137 cites W2147347517 @default.
- W4296180137 cites W2345782852 @default.
- W4296180137 cites W2518599539 @default.
- W4296180137 cites W2569272946 @default.
- W4296180137 cites W2571308009 @default.
- W4296180137 cites W2587403786 @default.
- W4296180137 cites W2938260698 @default.
- W4296180137 cites W2982081451 @default.
- W4296180137 cites W2990278031 @default.
- W4296180137 cites W3003121299 @default.
- W4296180137 cites W3009702330 @default.
- W4296180137 cites W3018276607 @default.
- W4296180137 cites W3019728440 @default.
- W4296180137 cites W3029368604 @default.
- W4296180137 cites W3030079400 @default.
- W4296180137 cites W3045574773 @default.
- W4296180137 cites W3093449804 @default.
- W4296180137 cites W3098589008 @default.
- W4296180137 cites W3113755791 @default.
- W4296180137 cites W3149623420 @default.
- W4296180137 cites W3197688739 @default.
- W4296180137 cites W4288052748 @default.
- W4296180137 doi "https://doi.org/10.1016/j.dsp.2022.103747" @default.
- W4296180137 hasPublicationYear "2022" @default.
- W4296180137 type Work @default.
- W4296180137 citedByCount "5" @default.
- W4296180137 countsByYear W42961801372023 @default.
- W4296180137 crossrefType "journal-article" @default.
- W4296180137 hasAuthorship W4296180137A5022154207 @default.
- W4296180137 hasAuthorship W4296180137A5033351506 @default.
- W4296180137 hasAuthorship W4296180137A5063188437 @default.
- W4296180137 hasAuthorship W4296180137A5068221881 @default.
- W4296180137 hasAuthorship W4296180137A5085833222 @default.
- W4296180137 hasAuthorship W4296180137A5087739571 @default.
- W4296180137 hasConcept C121332964 @default.
- W4296180137 hasConcept C127162648 @default.
- W4296180137 hasConcept C13280743 @default.
- W4296180137 hasConcept C138885662 @default.
- W4296180137 hasConcept C151730666 @default.
- W4296180137 hasConcept C153180895 @default.
- W4296180137 hasConcept C154945302 @default.
- W4296180137 hasConcept C185798385 @default.
- W4296180137 hasConcept C205649164 @default.
- W4296180137 hasConcept C2776401178 @default.
- W4296180137 hasConcept C2778755073 @default.
- W4296180137 hasConcept C2779343474 @default.
- W4296180137 hasConcept C2780719617 @default.
- W4296180137 hasConcept C31258907 @default.
- W4296180137 hasConcept C31972630 @default.
- W4296180137 hasConcept C41008148 @default.
- W4296180137 hasConcept C41895202 @default.
- W4296180137 hasConcept C45347329 @default.
- W4296180137 hasConcept C50644808 @default.
- W4296180137 hasConcept C62520636 @default.
- W4296180137 hasConcept C81363708 @default.
- W4296180137 hasConcept C86803240 @default.
- W4296180137 hasConceptScore W4296180137C121332964 @default.
- W4296180137 hasConceptScore W4296180137C127162648 @default.
- W4296180137 hasConceptScore W4296180137C13280743 @default.
- W4296180137 hasConceptScore W4296180137C138885662 @default.
- W4296180137 hasConceptScore W4296180137C151730666 @default.
- W4296180137 hasConceptScore W4296180137C153180895 @default.
- W4296180137 hasConceptScore W4296180137C154945302 @default.
- W4296180137 hasConceptScore W4296180137C185798385 @default.
- W4296180137 hasConceptScore W4296180137C205649164 @default.
- W4296180137 hasConceptScore W4296180137C2776401178 @default.
- W4296180137 hasConceptScore W4296180137C2778755073 @default.
- W4296180137 hasConceptScore W4296180137C2779343474 @default.
- W4296180137 hasConceptScore W4296180137C2780719617 @default.
- W4296180137 hasConceptScore W4296180137C31258907 @default.
- W4296180137 hasConceptScore W4296180137C31972630 @default.
- W4296180137 hasConceptScore W4296180137C41008148 @default.
- W4296180137 hasConceptScore W4296180137C41895202 @default.
- W4296180137 hasConceptScore W4296180137C45347329 @default.
- W4296180137 hasConceptScore W4296180137C50644808 @default.
- W4296180137 hasConceptScore W4296180137C62520636 @default.
- W4296180137 hasConceptScore W4296180137C81363708 @default.
- W4296180137 hasConceptScore W4296180137C86803240 @default.
- W4296180137 hasLocation W42961801371 @default.
- W4296180137 hasOpenAccess W4296180137 @default.
- W4296180137 hasPrimaryLocation W42961801371 @default.
- W4296180137 hasRelatedWork W1504288058 @default.
- W4296180137 hasRelatedWork W187484614 @default.