Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296209586> ?p ?o ?g. }
- W4296209586 endingPage "21" @default.
- W4296209586 startingPage "1" @default.
- W4296209586 abstract "Osteosarcoma (OS) is a rare form of malignant bone cancer that is usually detected in young adults and adolescents. This disease shows a poor prognosis owing to its metastatic status and resistance to chemotherapy. Hence, it is necessary to design a risk model that can successfully forecast the OS prognosis in patients.The researchers retrieved the RNA sequencing data and follow-up clinical data related to OS patients from the TARGET and GEO databases, respectively. The coxph function in R software was used for carrying out the Univariate Cox regression analysis for deriving the aging-based genes related sto the OS prognosis. The researchers conducted consistency clustering using the ConcensusClusterPlus R package. The R software package ESTIMATE, MCPcounter, and GSVA packages were used for assessing the immune scores of various subtypes using the ssGSEA technique, respectively. The Univariate Cox and Lasso regression analyses were used for screening and developing a risk model. The ROC curves were constructed, using the pROC package. The performance of their developed risk model and designed survival curve was conducted, with the help of the Survminer package.The OS patients were classified into 2 categories, as per the aging-related genes. The results revealed that the Cluster 1 patients showed a better prognosis than the Cluster 2 patients. Both clusters showed different immune microenvironments. Additional screening of the prognosis-associated genes revealed the presence of 5 genes, i.e., ERCC4, GPX4, EPS8, TERT, and STAT5A, and these data were used for developing the risk model. This risk model categorized the training set samples into the high- and low-risk groups. The patients classified into the high-risk group showed a poor OS prognosis compared to the low-risk patients. The researchers verified the reliability and robustness of the designed 5-gene signature using the internal and external datasets. This risk model was able to effectively predict the prognosis even in the samples having differing clinical features. Compared with other models, the 5- gene model performs better in predicting the risk of osteosarcoma.The 5-gene signature developed by the researchers in this study could be effectively used for forecasting the OS prognosis in patients." @default.
- W4296209586 created "2022-09-18" @default.
- W4296209586 creator A5042973046 @default.
- W4296209586 creator A5049282643 @default.
- W4296209586 creator A5062153370 @default.
- W4296209586 creator A5084072295 @default.
- W4296209586 creator A5085207880 @default.
- W4296209586 date "2022-09-16" @default.
- W4296209586 modified "2023-09-30" @default.
- W4296209586 title "Construction of Molecular Subtype and Prognosis Prediction Model of Osteosarcoma Based on Aging-Related Genes" @default.
- W4296209586 cites W1574296676 @default.
- W4296209586 cites W1706026279 @default.
- W4296209586 cites W1896848573 @default.
- W4296209586 cites W2002490399 @default.
- W4296209586 cites W2035164560 @default.
- W4296209586 cites W2043601932 @default.
- W4296209586 cites W2081958807 @default.
- W4296209586 cites W2083594352 @default.
- W4296209586 cites W2087052316 @default.
- W4296209586 cites W2088904527 @default.
- W4296209586 cites W2096982451 @default.
- W4296209586 cites W2104733074 @default.
- W4296209586 cites W2145025195 @default.
- W4296209586 cites W2165528850 @default.
- W4296209586 cites W2183543808 @default.
- W4296209586 cites W2315512556 @default.
- W4296209586 cites W2385816839 @default.
- W4296209586 cites W2471512960 @default.
- W4296209586 cites W2610207811 @default.
- W4296209586 cites W2735521483 @default.
- W4296209586 cites W2738742181 @default.
- W4296209586 cites W2782893319 @default.
- W4296209586 cites W2788548733 @default.
- W4296209586 cites W2789813374 @default.
- W4296209586 cites W2791360112 @default.
- W4296209586 cites W2794079467 @default.
- W4296209586 cites W2811318954 @default.
- W4296209586 cites W2894531839 @default.
- W4296209586 cites W2904045099 @default.
- W4296209586 cites W2911042556 @default.
- W4296209586 cites W2915657188 @default.
- W4296209586 cites W2949273159 @default.
- W4296209586 cites W2967501594 @default.
- W4296209586 cites W2977179581 @default.
- W4296209586 cites W2995095231 @default.
- W4296209586 cites W2997843311 @default.
- W4296209586 cites W3046083152 @default.
- W4296209586 cites W3080153596 @default.
- W4296209586 cites W3095205193 @default.
- W4296209586 cites W3098918205 @default.
- W4296209586 cites W3106915886 @default.
- W4296209586 cites W3111207111 @default.
- W4296209586 cites W3118342167 @default.
- W4296209586 cites W3123215364 @default.
- W4296209586 cites W3125908032 @default.
- W4296209586 cites W3158540409 @default.
- W4296209586 cites W3184906939 @default.
- W4296209586 cites W3216220534 @default.
- W4296209586 cites W4200448028 @default.
- W4296209586 cites W4225391037 @default.
- W4296209586 doi "https://doi.org/10.1155/2022/8177948" @default.
- W4296209586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36157228" @default.
- W4296209586 hasPublicationYear "2022" @default.
- W4296209586 type Work @default.
- W4296209586 citedByCount "0" @default.
- W4296209586 crossrefType "journal-article" @default.
- W4296209586 hasAuthorship W4296209586A5042973046 @default.
- W4296209586 hasAuthorship W4296209586A5049282643 @default.
- W4296209586 hasAuthorship W4296209586A5062153370 @default.
- W4296209586 hasAuthorship W4296209586A5084072295 @default.
- W4296209586 hasAuthorship W4296209586A5085207880 @default.
- W4296209586 hasBestOaLocation W42962095861 @default.
- W4296209586 hasConcept C119857082 @default.
- W4296209586 hasConcept C126322002 @default.
- W4296209586 hasConcept C136764020 @default.
- W4296209586 hasConcept C142724271 @default.
- W4296209586 hasConcept C143998085 @default.
- W4296209586 hasConcept C144301174 @default.
- W4296209586 hasConcept C161584116 @default.
- W4296209586 hasConcept C199163554 @default.
- W4296209586 hasConcept C2777760704 @default.
- W4296209586 hasConcept C2993277928 @default.
- W4296209586 hasConcept C3019894029 @default.
- W4296209586 hasConcept C37616216 @default.
- W4296209586 hasConcept C38180746 @default.
- W4296209586 hasConcept C41008148 @default.
- W4296209586 hasConcept C50382708 @default.
- W4296209586 hasConcept C71924100 @default.
- W4296209586 hasConceptScore W4296209586C119857082 @default.
- W4296209586 hasConceptScore W4296209586C126322002 @default.
- W4296209586 hasConceptScore W4296209586C136764020 @default.
- W4296209586 hasConceptScore W4296209586C142724271 @default.
- W4296209586 hasConceptScore W4296209586C143998085 @default.
- W4296209586 hasConceptScore W4296209586C144301174 @default.
- W4296209586 hasConceptScore W4296209586C161584116 @default.
- W4296209586 hasConceptScore W4296209586C199163554 @default.
- W4296209586 hasConceptScore W4296209586C2777760704 @default.
- W4296209586 hasConceptScore W4296209586C2993277928 @default.