Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296220120> ?p ?o ?g. }
- W4296220120 endingPage "126630" @default.
- W4296220120 startingPage "126630" @default.
- W4296220120 abstract "Predicting areas of severe biomass loss and increased N leaching risk under climate change is critical for applying appropriate adaptation measures to support more sustainable agricultural systems. The frequency of annual severe biomass loss for winter wheat and its coincidence with an increase in N leaching in a temperate region in Germany was estimated including the error from using soil and climate input data at coarser spatial scales, using the soil-crop model CoupModel. We ran the model for a reference period (1980–2010) and used climate data predicted by four climate model(s) for the Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5. The annual median biomass estimations showed that for the period 2070–2100, under the RCP8.5 scenario, the entire region would suffer from severe biomass loss almost every year. Annual incidence of severe biomass loss and increased N leaching was predicted to increase from RCP4.5 to the 8.5 scenario. During 2070–2100 for RCP8.5, in more than half of the years an area of 95% of the region was projected to suffer from both severe biomass loss and increased N leaching. The SPEI3 predicted a range of 32 (P3 RCP4.5) to 55% (P3 RCP8.5) of the severe biomass loss episodes simulated in the climate change scenarios. The simulations predicted more severe biomass losses than by the SPEI index which indicates that soil water deficits are important in determining crop losses in future climate scenarios. There was a risk of overestimating the area where “no severe biomass loss + increased N leaching” occurred when using coarser aggregated input data. In contrast, underestimation of situations where “severe biomass loss + increased N leaching” occurred when using coarser aggregated input data. Larger annual differences in biomass estimations compared to the finest resolution of input data occurred when aggregating climate input data rather than soil data. The differences were even larger when aggregating both soil and climate input data. In half of the region, biomass could be erroneously estimated in a single year by more than 40% if using soil and climate coarser input data. The results suggest that a higher spatial resolution of especially climate input data would be needed to predict reliably annual estimates of severe biomass loss and N leaching under climate change scenarios." @default.
- W4296220120 created "2022-09-18" @default.
- W4296220120 creator A5003172854 @default.
- W4296220120 creator A5007740380 @default.
- W4296220120 creator A5031000337 @default.
- W4296220120 creator A5069966398 @default.
- W4296220120 creator A5076540849 @default.
- W4296220120 date "2022-11-01" @default.
- W4296220120 modified "2023-10-05" @default.
- W4296220120 title "Aggregation of soil and climate input data can underestimate simulated biomass loss and nitrate leaching under climate change" @default.
- W4296220120 cites W1797559173 @default.
- W4296220120 cites W1970691902 @default.
- W4296220120 cites W1972420894 @default.
- W4296220120 cites W1993424574 @default.
- W4296220120 cites W1997557923 @default.
- W4296220120 cites W1999211898 @default.
- W4296220120 cites W2002115844 @default.
- W4296220120 cites W2003579442 @default.
- W4296220120 cites W2020083063 @default.
- W4296220120 cites W2038065329 @default.
- W4296220120 cites W2041494135 @default.
- W4296220120 cites W2047684158 @default.
- W4296220120 cites W2050900916 @default.
- W4296220120 cites W2053969603 @default.
- W4296220120 cites W2059087733 @default.
- W4296220120 cites W2064019196 @default.
- W4296220120 cites W2077968790 @default.
- W4296220120 cites W2085074416 @default.
- W4296220120 cites W2103643521 @default.
- W4296220120 cites W2116695098 @default.
- W4296220120 cites W2118921617 @default.
- W4296220120 cites W2120889976 @default.
- W4296220120 cites W2126902408 @default.
- W4296220120 cites W2137452537 @default.
- W4296220120 cites W2148333466 @default.
- W4296220120 cites W2153328324 @default.
- W4296220120 cites W2161980091 @default.
- W4296220120 cites W2315311660 @default.
- W4296220120 cites W2315457625 @default.
- W4296220120 cites W2377790625 @default.
- W4296220120 cites W2392998208 @default.
- W4296220120 cites W2470462670 @default.
- W4296220120 cites W2472719015 @default.
- W4296220120 cites W2515685358 @default.
- W4296220120 cites W2591503586 @default.
- W4296220120 cites W2593451653 @default.
- W4296220120 cites W2616805127 @default.
- W4296220120 cites W2619178125 @default.
- W4296220120 cites W2782686000 @default.
- W4296220120 cites W2794705875 @default.
- W4296220120 cites W2800299140 @default.
- W4296220120 cites W2802276444 @default.
- W4296220120 cites W2883184480 @default.
- W4296220120 cites W2897284484 @default.
- W4296220120 cites W2899848994 @default.
- W4296220120 cites W2903227267 @default.
- W4296220120 cites W2916974823 @default.
- W4296220120 cites W2947837721 @default.
- W4296220120 cites W2953901720 @default.
- W4296220120 cites W2975579546 @default.
- W4296220120 cites W2978035705 @default.
- W4296220120 cites W3032926167 @default.
- W4296220120 cites W3040411089 @default.
- W4296220120 cites W3097588156 @default.
- W4296220120 cites W4251599237 @default.
- W4296220120 doi "https://doi.org/10.1016/j.eja.2022.126630" @default.
- W4296220120 hasPublicationYear "2022" @default.
- W4296220120 type Work @default.
- W4296220120 citedByCount "1" @default.
- W4296220120 crossrefType "journal-article" @default.
- W4296220120 hasAuthorship W4296220120A5003172854 @default.
- W4296220120 hasAuthorship W4296220120A5007740380 @default.
- W4296220120 hasAuthorship W4296220120A5031000337 @default.
- W4296220120 hasAuthorship W4296220120A5069966398 @default.
- W4296220120 hasAuthorship W4296220120A5076540849 @default.
- W4296220120 hasBestOaLocation W42962201201 @default.
- W4296220120 hasConcept C115540264 @default.
- W4296220120 hasConcept C127313418 @default.
- W4296220120 hasConcept C132651083 @default.
- W4296220120 hasConcept C159390177 @default.
- W4296220120 hasConcept C159750122 @default.
- W4296220120 hasConcept C168754636 @default.
- W4296220120 hasConcept C18903297 @default.
- W4296220120 hasConcept C2778760939 @default.
- W4296220120 hasConcept C39432304 @default.
- W4296220120 hasConcept C6557445 @default.
- W4296220120 hasConcept C81461190 @default.
- W4296220120 hasConcept C86803240 @default.
- W4296220120 hasConcept C90982505 @default.
- W4296220120 hasConcept C91586092 @default.
- W4296220120 hasConceptScore W4296220120C115540264 @default.
- W4296220120 hasConceptScore W4296220120C127313418 @default.
- W4296220120 hasConceptScore W4296220120C132651083 @default.
- W4296220120 hasConceptScore W4296220120C159390177 @default.
- W4296220120 hasConceptScore W4296220120C159750122 @default.
- W4296220120 hasConceptScore W4296220120C168754636 @default.
- W4296220120 hasConceptScore W4296220120C18903297 @default.
- W4296220120 hasConceptScore W4296220120C2778760939 @default.