Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296234809> ?p ?o ?g. }
- W4296234809 endingPage "109416" @default.
- W4296234809 startingPage "109416" @default.
- W4296234809 abstract "Accurate air quality index (AQI) forecasting makes a difference to public health, local economic development, and ecological environment. As a typical geographical datum, the spatial autocorrelation (SAC) of the AQI is often ignored, which may violate the assumptions of some models, such as machine learning which requires variables to be independent and identically distributed. Considering the strong SAC of the AQI, this study proposes a novel statistical learning framework integrating SAC variables, feature selection, and support vector regression (SVR) for AQI prediction in which correlation analysis and time series analysis are used to extract the spatial-temporal features. In addition, the historical AQI series of the target site is adjusted by using trigonometric regression to eliminate the non-stationarity. To further improve prediction accuracy, a feature selection method combining reinforcement learning with a heuristic algorithm is adopted. To demonstrate the effectiveness of our proposed framework, we select the AQI data of 34 cities from the Yangtze River Delta, which is one of the most polluted areas in eastern China, and focus on the three largest cities, Nanjing, Hangzhou, and Shanghai. We compared the proposed framework with several baselines, and the experiment illustrates that the forecasting accuracy of the proposed framework is significantly better than the baselines at all selected key sites that can provide accurate predictions for air quality." @default.
- W4296234809 created "2022-09-18" @default.
- W4296234809 creator A5044575556 @default.
- W4296234809 creator A5066433321 @default.
- W4296234809 creator A5073924559 @default.
- W4296234809 creator A5080181112 @default.
- W4296234809 creator A5090789379 @default.
- W4296234809 date "2022-11-01" @default.
- W4296234809 modified "2023-10-05" @default.
- W4296234809 title "A statistical learning framework for spatial-temporal feature selection and application to air quality index forecasting" @default.
- W4296234809 cites W1967903496 @default.
- W4296234809 cites W1973749534 @default.
- W4296234809 cites W2004945677 @default.
- W4296234809 cites W2009927598 @default.
- W4296234809 cites W2045256553 @default.
- W4296234809 cites W2080651100 @default.
- W4296234809 cites W2089792340 @default.
- W4296234809 cites W2092643666 @default.
- W4296234809 cites W2102093423 @default.
- W4296234809 cites W2155475871 @default.
- W4296234809 cites W2161478633 @default.
- W4296234809 cites W2296523680 @default.
- W4296234809 cites W2540635859 @default.
- W4296234809 cites W2603932396 @default.
- W4296234809 cites W2765825757 @default.
- W4296234809 cites W2768006893 @default.
- W4296234809 cites W2789849108 @default.
- W4296234809 cites W2810586154 @default.
- W4296234809 cites W2810884085 @default.
- W4296234809 cites W2815885864 @default.
- W4296234809 cites W2886875452 @default.
- W4296234809 cites W2916789854 @default.
- W4296234809 cites W2921254207 @default.
- W4296234809 cites W2936386745 @default.
- W4296234809 cites W2940272872 @default.
- W4296234809 cites W2947059554 @default.
- W4296234809 cites W2948512238 @default.
- W4296234809 cites W2965353672 @default.
- W4296234809 cites W2992787831 @default.
- W4296234809 cites W3003943436 @default.
- W4296234809 cites W3011053038 @default.
- W4296234809 cites W3020040350 @default.
- W4296234809 cites W3020054080 @default.
- W4296234809 cites W3032502637 @default.
- W4296234809 cites W3036899731 @default.
- W4296234809 cites W3083243855 @default.
- W4296234809 cites W3091399794 @default.
- W4296234809 cites W3096834012 @default.
- W4296234809 cites W3098448153 @default.
- W4296234809 cites W3111483831 @default.
- W4296234809 cites W3118304288 @default.
- W4296234809 cites W3119949584 @default.
- W4296234809 cites W3175380096 @default.
- W4296234809 cites W3175678658 @default.
- W4296234809 cites W4207044535 @default.
- W4296234809 cites W4210518990 @default.
- W4296234809 cites W4244230525 @default.
- W4296234809 doi "https://doi.org/10.1016/j.ecolind.2022.109416" @default.
- W4296234809 hasPublicationYear "2022" @default.
- W4296234809 type Work @default.
- W4296234809 citedByCount "12" @default.
- W4296234809 countsByYear W42962348092023 @default.
- W4296234809 crossrefType "journal-article" @default.
- W4296234809 hasAuthorship W4296234809A5044575556 @default.
- W4296234809 hasAuthorship W4296234809A5066433321 @default.
- W4296234809 hasAuthorship W4296234809A5073924559 @default.
- W4296234809 hasAuthorship W4296234809A5080181112 @default.
- W4296234809 hasAuthorship W4296234809A5090789379 @default.
- W4296234809 hasBestOaLocation W42962348091 @default.
- W4296234809 hasConcept C105795698 @default.
- W4296234809 hasConcept C119857082 @default.
- W4296234809 hasConcept C12267149 @default.
- W4296234809 hasConcept C124101348 @default.
- W4296234809 hasConcept C126314574 @default.
- W4296234809 hasConcept C136764020 @default.
- W4296234809 hasConcept C138885662 @default.
- W4296234809 hasConcept C148483581 @default.
- W4296234809 hasConcept C151406439 @default.
- W4296234809 hasConcept C153294291 @default.
- W4296234809 hasConcept C154945302 @default.
- W4296234809 hasConcept C159620131 @default.
- W4296234809 hasConcept C173801870 @default.
- W4296234809 hasConcept C205649164 @default.
- W4296234809 hasConcept C2776401178 @default.
- W4296234809 hasConcept C2777382242 @default.
- W4296234809 hasConcept C33923547 @default.
- W4296234809 hasConcept C41008148 @default.
- W4296234809 hasConcept C41895202 @default.
- W4296234809 hasConcept C5297727 @default.
- W4296234809 hasConcept C81917197 @default.
- W4296234809 hasConcept C83546350 @default.
- W4296234809 hasConceptScore W4296234809C105795698 @default.
- W4296234809 hasConceptScore W4296234809C119857082 @default.
- W4296234809 hasConceptScore W4296234809C12267149 @default.
- W4296234809 hasConceptScore W4296234809C124101348 @default.
- W4296234809 hasConceptScore W4296234809C126314574 @default.
- W4296234809 hasConceptScore W4296234809C136764020 @default.
- W4296234809 hasConceptScore W4296234809C138885662 @default.