Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296236044> ?p ?o ?g. }
- W4296236044 endingPage "13509" @default.
- W4296236044 startingPage "13499" @default.
- W4296236044 abstract "Land use regression (LUR) models are widely applied to estimate intra-urban air pollution concentrations. National-scale LURs typically employ predictors from multiple curated geodatabases at neighborhood scales. In this study, we instead developed national NO2 models relying on innovative street-level predictors extracted from Google Street View [GSV] imagery. Using machine learning (random forest), we developed two types of models: (1) GSV-only models, which use only GSV features, and (2) GSV + OMI models, which also include satellite observations of NO2. Our results suggest that street view imagery alone may provide sufficient information to explain NO2 variation. Satellite observations can improve model performance, but the contribution decreases as more images are available. Random 10-fold cross-validation R2 of our best models were 0.88 (GSV-only) and 0.91 (GSV + OMI)─a performance that is comparable to traditional LUR approaches. Importantly, our models show that street-level features might have the potential to better capture intra-urban variation of NO2 pollution than traditional LUR. Collectively, our findings indicate that street view image-based modeling has great potential for building large-scale air quality models under a unified framework. Toward that goal, we describe a cost-effective image sampling strategy for future studies based on a systematic evaluation of image availability and model performance." @default.
- W4296236044 created "2022-09-18" @default.
- W4296236044 creator A5037628576 @default.
- W4296236044 creator A5050225100 @default.
- W4296236044 creator A5052588320 @default.
- W4296236044 creator A5067659683 @default.
- W4296236044 creator A5089085553 @default.
- W4296236044 date "2022-09-09" @default.
- W4296236044 modified "2023-09-29" @default.
- W4296236044 title "National Land Use Regression Model for NO<sub>2</sub> Using Street View Imagery and Satellite Observations" @default.
- W4296236044 cites W1983132585 @default.
- W4296236044 cites W2029395610 @default.
- W4296236044 cites W2053404990 @default.
- W4296236044 cites W207017219 @default.
- W4296236044 cites W2078732381 @default.
- W4296236044 cites W2098637521 @default.
- W4296236044 cites W2105150627 @default.
- W4296236044 cites W2119019979 @default.
- W4296236044 cites W2136915828 @default.
- W4296236044 cites W2154589423 @default.
- W4296236044 cites W2155829461 @default.
- W4296236044 cites W2181531051 @default.
- W4296236044 cites W2288470020 @default.
- W4296236044 cites W2291282024 @default.
- W4296236044 cites W2434823106 @default.
- W4296236044 cites W2477275132 @default.
- W4296236044 cites W2526772772 @default.
- W4296236044 cites W2560023338 @default.
- W4296236044 cites W2614445056 @default.
- W4296236044 cites W2616584304 @default.
- W4296236044 cites W2621121878 @default.
- W4296236044 cites W2768852312 @default.
- W4296236044 cites W2779555052 @default.
- W4296236044 cites W2802308221 @default.
- W4296236044 cites W2887788238 @default.
- W4296236044 cites W2888327598 @default.
- W4296236044 cites W2888926545 @default.
- W4296236044 cites W2895340159 @default.
- W4296236044 cites W2897506718 @default.
- W4296236044 cites W2901460997 @default.
- W4296236044 cites W2913383073 @default.
- W4296236044 cites W2935394434 @default.
- W4296236044 cites W2935882650 @default.
- W4296236044 cites W2947380028 @default.
- W4296236044 cites W2964378914 @default.
- W4296236044 cites W2971807556 @default.
- W4296236044 cites W2996331566 @default.
- W4296236044 cites W3006070132 @default.
- W4296236044 cites W3015407791 @default.
- W4296236044 cites W3047444082 @default.
- W4296236044 cites W3047727732 @default.
- W4296236044 cites W3049118933 @default.
- W4296236044 cites W3096146252 @default.
- W4296236044 cites W3097555941 @default.
- W4296236044 cites W3128794575 @default.
- W4296236044 cites W3135484287 @default.
- W4296236044 cites W3145606882 @default.
- W4296236044 cites W3165356482 @default.
- W4296236044 cites W3165634358 @default.
- W4296236044 cites W3166176735 @default.
- W4296236044 cites W3182250664 @default.
- W4296236044 cites W3183431732 @default.
- W4296236044 cites W3193638860 @default.
- W4296236044 cites W3196336125 @default.
- W4296236044 cites W3206176311 @default.
- W4296236044 cites W3208148060 @default.
- W4296236044 cites W3209896958 @default.
- W4296236044 doi "https://doi.org/10.1021/acs.est.2c03581" @default.
- W4296236044 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36084299" @default.
- W4296236044 hasPublicationYear "2022" @default.
- W4296236044 type Work @default.
- W4296236044 citedByCount "5" @default.
- W4296236044 countsByYear W42962360442023 @default.
- W4296236044 crossrefType "journal-article" @default.
- W4296236044 hasAuthorship W4296236044A5037628576 @default.
- W4296236044 hasAuthorship W4296236044A5050225100 @default.
- W4296236044 hasAuthorship W4296236044A5052588320 @default.
- W4296236044 hasAuthorship W4296236044A5067659683 @default.
- W4296236044 hasAuthorship W4296236044A5089085553 @default.
- W4296236044 hasConcept C105795698 @default.
- W4296236044 hasConcept C106131492 @default.
- W4296236044 hasConcept C119857082 @default.
- W4296236044 hasConcept C126314574 @default.
- W4296236044 hasConcept C127413603 @default.
- W4296236044 hasConcept C140779682 @default.
- W4296236044 hasConcept C146978453 @default.
- W4296236044 hasConcept C152877465 @default.
- W4296236044 hasConcept C153294291 @default.
- W4296236044 hasConcept C169258074 @default.
- W4296236044 hasConcept C19269812 @default.
- W4296236044 hasConcept C205649164 @default.
- W4296236044 hasConcept C2778102629 @default.
- W4296236044 hasConcept C2778755073 @default.
- W4296236044 hasConcept C31972630 @default.
- W4296236044 hasConcept C33923547 @default.
- W4296236044 hasConcept C39432304 @default.
- W4296236044 hasConcept C41008148 @default.
- W4296236044 hasConcept C58640448 @default.