Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296238975> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4296238975 abstract "A half-arc-transitive graph is a regular graph that is both vertex- and edge-transitive, but is not arc-transitive. If such a graph has finite valency, then its valency is even, and greater than $2$. In 1970, Bouwer proved that there exists a half-arc-transitive graph of every even valency greater than 2, by giving a construction for a family of graphs now known as $B(k,m,n)$, defined for every triple $(k,m,n)$ of integers greater than $1$ with $2^m equiv 1 mod n$. In each case, $B(k,m,n)$ is a $2k$-valent vertex- and edge-transitive graph of order $mn^{k-1}$, and Bouwer showed that $B(k,6,9)$ is half-arc-transitive for all $k > 1$. For almost 45 years the question of exactly which of Bouwer's graphs are half-arc-transitive and which are arc-transitive has remained open, despite many attempts to answer it. In this paper, we use a cycle-counting argument to prove that almost all of the graphs constructed by Bouwer are half-arc-transitive. In fact, we prove that $B(k,m,n)$ is arc-transitive only when $n = 3$, or $(k,n) = (2,5)$, % and $m$ is a multiple of $4$, or $(k,m,n) = (2,3,7)$ or $(2,6,7)$ or $(2,6,21)$. In particular, $B(k,m,n)$ is half-arc-transitive whenever $m > 6$ and $n > 5$. This gives an easy way to prove that there are infinitely many half-arc-transitive graphs of each even valency $2k > 2$." @default.
- W4296238975 created "2022-09-18" @default.
- W4296238975 creator A5061380055 @default.
- W4296238975 creator A5061875089 @default.
- W4296238975 date "2015-05-09" @default.
- W4296238975 modified "2023-10-16" @default.
- W4296238975 title "Half-arc-transitive graphs of arbitrary even valency greater than 2" @default.
- W4296238975 doi "https://doi.org/10.48550/arxiv.1505.02299" @default.
- W4296238975 hasPublicationYear "2015" @default.
- W4296238975 type Work @default.
- W4296238975 citedByCount "0" @default.
- W4296238975 crossrefType "posted-content" @default.
- W4296238975 hasAuthorship W4296238975A5061380055 @default.
- W4296238975 hasAuthorship W4296238975A5061875089 @default.
- W4296238975 hasBestOaLocation W42962389751 @default.
- W4296238975 hasConcept C114614502 @default.
- W4296238975 hasConcept C118615104 @default.
- W4296238975 hasConcept C129691609 @default.
- W4296238975 hasConcept C132525143 @default.
- W4296238975 hasConcept C138885662 @default.
- W4296238975 hasConcept C139007053 @default.
- W4296238975 hasConcept C14201764 @default.
- W4296238975 hasConcept C191399111 @default.
- W4296238975 hasConcept C203776342 @default.
- W4296238975 hasConcept C22149727 @default.
- W4296238975 hasConcept C2524010 @default.
- W4296238975 hasConcept C33923547 @default.
- W4296238975 hasConcept C41895202 @default.
- W4296238975 hasConcept C80899671 @default.
- W4296238975 hasConcept C83415579 @default.
- W4296238975 hasConceptScore W4296238975C114614502 @default.
- W4296238975 hasConceptScore W4296238975C118615104 @default.
- W4296238975 hasConceptScore W4296238975C129691609 @default.
- W4296238975 hasConceptScore W4296238975C132525143 @default.
- W4296238975 hasConceptScore W4296238975C138885662 @default.
- W4296238975 hasConceptScore W4296238975C139007053 @default.
- W4296238975 hasConceptScore W4296238975C14201764 @default.
- W4296238975 hasConceptScore W4296238975C191399111 @default.
- W4296238975 hasConceptScore W4296238975C203776342 @default.
- W4296238975 hasConceptScore W4296238975C22149727 @default.
- W4296238975 hasConceptScore W4296238975C2524010 @default.
- W4296238975 hasConceptScore W4296238975C33923547 @default.
- W4296238975 hasConceptScore W4296238975C41895202 @default.
- W4296238975 hasConceptScore W4296238975C80899671 @default.
- W4296238975 hasConceptScore W4296238975C83415579 @default.
- W4296238975 hasLocation W42962389751 @default.
- W4296238975 hasOpenAccess W4296238975 @default.
- W4296238975 hasPrimaryLocation W42962389751 @default.
- W4296238975 hasRelatedWork W1981772769 @default.
- W4296238975 hasRelatedWork W2061546129 @default.
- W4296238975 hasRelatedWork W2122976707 @default.
- W4296238975 hasRelatedWork W2165028706 @default.
- W4296238975 hasRelatedWork W2963223390 @default.
- W4296238975 hasRelatedWork W2997363135 @default.
- W4296238975 hasRelatedWork W4210631879 @default.
- W4296238975 hasRelatedWork W4224235877 @default.
- W4296238975 hasRelatedWork W4297509249 @default.
- W4296238975 hasRelatedWork W817442005 @default.
- W4296238975 isParatext "false" @default.
- W4296238975 isRetracted "false" @default.
- W4296238975 workType "article" @default.