Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296268977> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4296268977 endingPage "4657" @default.
- W4296268977 startingPage "4657" @default.
- W4296268977 abstract "An Improved Particle Swarm Optimization Algorithm-Support Vector Regression Machine (IPSO-SVR) prediction model is developed in this paper to predict the electromagnetic (EM) scattering coefficients of the three-dimensional (3D) sea surface for large scenes in real-time. At first, the EM scattering model of the 3D sea surface is established based on the Semi-Deterministic Facet Scattering Model (SDFSM), and the validity of SDFSM is verified by comparing with the measured data. Using the SDFSM, the data set of backscattering coefficients from 3D sea surface is generated for different polarizations as the training samples. Secondly, an improved particle swarm optimization algorithm is proposed by combining the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The combined algorithm is utilized to optimize the parameters and train the SVR to build a regression prediction model. In the end, the extrapolated prediction for backscattering coefficients of the 3D sea surface is performed. The Root Mean Square Error (RMSE) of the IPSO-SVR-based prediction model is less than 1.2 dB, and the correlation coefficients are higher than 91%. And the prediction accuracy of the PSO-SVR-based, GA-SVR-based and IPSO-SVR-based prediction models is compared. The average RMSE of the PSO-SVR-based and GA-SVR-based prediction models is 1.4241 dB and 1.6289 dB, respectively. While the average RMSE of the IPSO-SVR-based prediction model is reduced to 1.1006 dB. Besides, the average correlation coefficient of the PSO-SVR-based and GA-SVR-based prediction models is 94.36% and 93.93%, respectively. While the average correlation coefficient of the IPSO-SVR-based prediction model reached 95.12%. It demonstrated that the IPSO-SVR-based prediction model can effectively improve the prediction accuracy compared with the PSO-SVR-based and GA-SVR-based prediction models. Moreover, the simulation time of IPSO-SVR-based prediction model is significantly decreased compared with the SDFSM, and the speedup ratio is greater than 15.0. Therefore, the prediction model in this paper has practical application in the real-time computation of sea surface scattering coefficients in large scenes." @default.
- W4296268977 created "2022-09-19" @default.
- W4296268977 creator A5009314993 @default.
- W4296268977 creator A5034046392 @default.
- W4296268977 creator A5076279539 @default.
- W4296268977 creator A5079142451 @default.
- W4296268977 date "2022-09-18" @default.
- W4296268977 modified "2023-09-30" @default.
- W4296268977 title "3D Sea Surface Electromagnetic Scattering Prediction Model Based on IPSO-SVR" @default.
- W4296268977 cites W1990001693 @default.
- W4296268977 cites W2016541210 @default.
- W4296268977 cites W2055429745 @default.
- W4296268977 cites W2062905974 @default.
- W4296268977 cites W2080337061 @default.
- W4296268977 cites W2105572471 @default.
- W4296268977 cites W2114664437 @default.
- W4296268977 cites W2149609057 @default.
- W4296268977 cites W2282752563 @default.
- W4296268977 cites W2340896621 @default.
- W4296268977 cites W2433989982 @default.
- W4296268977 cites W2503702045 @default.
- W4296268977 cites W2546225555 @default.
- W4296268977 cites W2592365852 @default.
- W4296268977 cites W2767795786 @default.
- W4296268977 cites W2768782040 @default.
- W4296268977 cites W2780539948 @default.
- W4296268977 cites W2781337699 @default.
- W4296268977 cites W2790354721 @default.
- W4296268977 cites W2795314092 @default.
- W4296268977 cites W2809225807 @default.
- W4296268977 cites W2895847953 @default.
- W4296268977 cites W2903351561 @default.
- W4296268977 cites W2913222807 @default.
- W4296268977 cites W2928253772 @default.
- W4296268977 cites W2954424132 @default.
- W4296268977 cites W2955624945 @default.
- W4296268977 cites W3000009168 @default.
- W4296268977 cites W3082896320 @default.
- W4296268977 cites W4205129187 @default.
- W4296268977 cites W4213288813 @default.
- W4296268977 cites W4283258785 @default.
- W4296268977 doi "https://doi.org/10.3390/rs14184657" @default.
- W4296268977 hasPublicationYear "2022" @default.
- W4296268977 type Work @default.
- W4296268977 citedByCount "4" @default.
- W4296268977 countsByYear W42962689772022 @default.
- W4296268977 countsByYear W42962689772023 @default.
- W4296268977 crossrefType "journal-article" @default.
- W4296268977 hasAuthorship W4296268977A5009314993 @default.
- W4296268977 hasAuthorship W4296268977A5034046392 @default.
- W4296268977 hasAuthorship W4296268977A5076279539 @default.
- W4296268977 hasAuthorship W4296268977A5079142451 @default.
- W4296268977 hasBestOaLocation W42962689771 @default.
- W4296268977 hasConcept C105795698 @default.
- W4296268977 hasConcept C11413529 @default.
- W4296268977 hasConcept C119857082 @default.
- W4296268977 hasConcept C12267149 @default.
- W4296268977 hasConcept C126255220 @default.
- W4296268977 hasConcept C139945424 @default.
- W4296268977 hasConcept C154945302 @default.
- W4296268977 hasConcept C27181475 @default.
- W4296268977 hasConcept C2780092901 @default.
- W4296268977 hasConcept C33923547 @default.
- W4296268977 hasConcept C41008148 @default.
- W4296268977 hasConcept C85617194 @default.
- W4296268977 hasConcept C8880873 @default.
- W4296268977 hasConceptScore W4296268977C105795698 @default.
- W4296268977 hasConceptScore W4296268977C11413529 @default.
- W4296268977 hasConceptScore W4296268977C119857082 @default.
- W4296268977 hasConceptScore W4296268977C12267149 @default.
- W4296268977 hasConceptScore W4296268977C126255220 @default.
- W4296268977 hasConceptScore W4296268977C139945424 @default.
- W4296268977 hasConceptScore W4296268977C154945302 @default.
- W4296268977 hasConceptScore W4296268977C27181475 @default.
- W4296268977 hasConceptScore W4296268977C2780092901 @default.
- W4296268977 hasConceptScore W4296268977C33923547 @default.
- W4296268977 hasConceptScore W4296268977C41008148 @default.
- W4296268977 hasConceptScore W4296268977C85617194 @default.
- W4296268977 hasConceptScore W4296268977C8880873 @default.
- W4296268977 hasIssue "18" @default.
- W4296268977 hasLocation W42962689771 @default.
- W4296268977 hasLocation W42962689772 @default.
- W4296268977 hasOpenAccess W4296268977 @default.
- W4296268977 hasPrimaryLocation W42962689771 @default.
- W4296268977 hasRelatedWork W1509857367 @default.
- W4296268977 hasRelatedWork W1525450140 @default.
- W4296268977 hasRelatedWork W1982952098 @default.
- W4296268977 hasRelatedWork W2008487868 @default.
- W4296268977 hasRelatedWork W2129642038 @default.
- W4296268977 hasRelatedWork W2347742175 @default.
- W4296268977 hasRelatedWork W2921750799 @default.
- W4296268977 hasRelatedWork W3048369679 @default.
- W4296268977 hasRelatedWork W3181322987 @default.
- W4296268977 hasRelatedWork W4296268977 @default.
- W4296268977 hasVolume "14" @default.
- W4296268977 isParatext "false" @default.
- W4296268977 isRetracted "false" @default.
- W4296268977 workType "article" @default.