Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296272105> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4296272105 endingPage "35965" @default.
- W4296272105 startingPage "35965" @default.
- W4296272105 abstract "We present a compact, field portable, lensless, single random phase encoding biosensor for automated classification between healthy and sickle cell disease human red blood cells. Microscope slides containing 3 µl wet mounts of whole blood samples from healthy and sickle cell disease afflicted human donors are input into a lensless single random phase encoding (SRPE) system for disease identification. A partially coherent laser source (laser diode) illuminates the cells under inspection wherein the object complex amplitude propagates to and is pseudorandomly encoded by a diffuser, then the intensity of the diffracted complex waveform is captured by a CMOS image sensor. The recorded opto-biological signatures are transformed using local binary pattern map generation during preprocessing then input into a pretrained convolutional neural network for classification between healthy and disease-states. We further provide analysis that compares the performance of several neural network architectures to optimize our classification strategy. Additionally, we assess the performance and computational savings of classifying on subsets of the opto-biological signatures with substantially reduced dimensionality, including one dimensional cropping of the recorded signatures. To the best of our knowledge, this is the first report of a lensless SRPE biosensor for human disease identification. As such, the presented approach and results can be significant for low-cost disease identification both in the field and for healthcare systems in developing countries which suffer from constrained resources." @default.
- W4296272105 created "2022-09-19" @default.
- W4296272105 creator A5017635198 @default.
- W4296272105 creator A5073971331 @default.
- W4296272105 creator A5090265161 @default.
- W4296272105 date "2022-09-16" @default.
- W4296272105 modified "2023-09-30" @default.
- W4296272105 title "Automated sickle cell disease identification in human red blood cells using a lensless single random phase encoding biosensor and convolutional neural networks" @default.
- W4296272105 cites W1763433851 @default.
- W4296272105 cites W1972323930 @default.
- W4296272105 cites W2000443157 @default.
- W4296272105 cites W2000779893 @default.
- W4296272105 cites W2021219704 @default.
- W4296272105 cites W2024669965 @default.
- W4296272105 cites W2066097027 @default.
- W4296272105 cites W2066537208 @default.
- W4296272105 cites W2110435659 @default.
- W4296272105 cites W2117200645 @default.
- W4296272105 cites W2122796192 @default.
- W4296272105 cites W2151453204 @default.
- W4296272105 cites W2218063964 @default.
- W4296272105 cites W2489190324 @default.
- W4296272105 cites W2564561895 @default.
- W4296272105 cites W2589934064 @default.
- W4296272105 cites W2756095261 @default.
- W4296272105 cites W2789104617 @default.
- W4296272105 cites W2800921271 @default.
- W4296272105 cites W2935899976 @default.
- W4296272105 cites W2951435588 @default.
- W4296272105 cites W2953247668 @default.
- W4296272105 cites W2962953024 @default.
- W4296272105 cites W3033624766 @default.
- W4296272105 cites W3035457495 @default.
- W4296272105 cites W3094257326 @default.
- W4296272105 cites W3103393705 @default.
- W4296272105 cites W3135728986 @default.
- W4296272105 cites W4210383484 @default.
- W4296272105 doi "https://doi.org/10.1364/oe.469199" @default.
- W4296272105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36258535" @default.
- W4296272105 hasPublicationYear "2022" @default.
- W4296272105 type Work @default.
- W4296272105 citedByCount "5" @default.
- W4296272105 countsByYear W42962721052023 @default.
- W4296272105 crossrefType "journal-article" @default.
- W4296272105 hasAuthorship W4296272105A5017635198 @default.
- W4296272105 hasAuthorship W4296272105A5073971331 @default.
- W4296272105 hasAuthorship W4296272105A5090265161 @default.
- W4296272105 hasBestOaLocation W42962721051 @default.
- W4296272105 hasConcept C116834253 @default.
- W4296272105 hasConcept C125411270 @default.
- W4296272105 hasConcept C153180895 @default.
- W4296272105 hasConcept C154945302 @default.
- W4296272105 hasConcept C34736171 @default.
- W4296272105 hasConcept C41008148 @default.
- W4296272105 hasConcept C59822182 @default.
- W4296272105 hasConcept C81363708 @default.
- W4296272105 hasConcept C86803240 @default.
- W4296272105 hasConceptScore W4296272105C116834253 @default.
- W4296272105 hasConceptScore W4296272105C125411270 @default.
- W4296272105 hasConceptScore W4296272105C153180895 @default.
- W4296272105 hasConceptScore W4296272105C154945302 @default.
- W4296272105 hasConceptScore W4296272105C34736171 @default.
- W4296272105 hasConceptScore W4296272105C41008148 @default.
- W4296272105 hasConceptScore W4296272105C59822182 @default.
- W4296272105 hasConceptScore W4296272105C81363708 @default.
- W4296272105 hasConceptScore W4296272105C86803240 @default.
- W4296272105 hasIssue "20" @default.
- W4296272105 hasLocation W42962721051 @default.
- W4296272105 hasLocation W42962721052 @default.
- W4296272105 hasOpenAccess W4296272105 @default.
- W4296272105 hasPrimaryLocation W42962721051 @default.
- W4296272105 hasRelatedWork W2043754618 @default.
- W4296272105 hasRelatedWork W2066259560 @default.
- W4296272105 hasRelatedWork W2126100045 @default.
- W4296272105 hasRelatedWork W2262783296 @default.
- W4296272105 hasRelatedWork W2380927352 @default.
- W4296272105 hasRelatedWork W2391959412 @default.
- W4296272105 hasRelatedWork W2767651786 @default.
- W4296272105 hasRelatedWork W2912288872 @default.
- W4296272105 hasRelatedWork W4211209597 @default.
- W4296272105 hasRelatedWork W564581980 @default.
- W4296272105 hasVolume "30" @default.
- W4296272105 isParatext "false" @default.
- W4296272105 isRetracted "false" @default.
- W4296272105 workType "article" @default.