Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296311345> ?p ?o ?g. }
- W4296311345 endingPage "417" @default.
- W4296311345 startingPage "399" @default.
- W4296311345 abstract "Coronavirus disease-2019 (COVID-19) seems to be a fast spreading contagious illness that affects both humans and animals. This catastrophic deadly virus has an impact on people's daily lives, their wellbeing, and a nation's economy. According to a clinical research of COVID-19 affected patients, these individuals have been most commonly infected with a lung illness after coming into touch with the virus. A chest X-ray (also known as radiography) or a chest CT scan seems to be more efficient imaging techniques for detecting lung issues. Nonetheless, when compared to a chest CT, a significant chest X-ray remains a less expensive procedure. Thus, in this research, a novel Deep convolution neural network algorithm is presented to detect the COVID-19 from X-ray image. Moreover, to enhance diagnostics sensitivity and reduce error rate, a hybrid Two-step-AS clustering approach with Ensemble Bootstrap aggregating training and Multiple NN methods used. In addition, TSEBANN model has been employed to explore the qualification procedure effects. The proposed algorithm was trained before and after classification while compared to traditional Convolutional Neural Network (CNN). After, the process of pre-processing and feature extraction, the CNN strategy was adopted as an identification approach to categorize the information depending on Chest X-ray recognition. These examples were then classified using the CNN classification technique. The testing was conducted on the COVID-19 X-ray dataset, and the cross-validation approach was used to determine the model’s validity. The result indicated that a CNN system classification has attained an accuracy of 98.062 %." @default.
- W4296311345 created "2022-09-20" @default.
- W4296311345 creator A5015963665 @default.
- W4296311345 creator A5031647223 @default.
- W4296311345 creator A5038734409 @default.
- W4296311345 creator A5040168644 @default.
- W4296311345 creator A5071696004 @default.
- W4296311345 date "2023-02-01" @default.
- W4296311345 modified "2023-10-17" @default.
- W4296311345 title "An intelligent deep convolutional network based COVID-19 detection from chest X-rays" @default.
- W4296311345 cites W2118142823 @default.
- W4296311345 cites W2946901414 @default.
- W4296311345 cites W3006882119 @default.
- W4296311345 cites W3008874180 @default.
- W4296311345 cites W3010702679 @default.
- W4296311345 cites W3011307261 @default.
- W4296311345 cites W3012751338 @default.
- W4296311345 cites W3016540417 @default.
- W4296311345 cites W3022163878 @default.
- W4296311345 cites W3029243274 @default.
- W4296311345 cites W3030109869 @default.
- W4296311345 cites W3030419021 @default.
- W4296311345 cites W3040508291 @default.
- W4296311345 cites W3042669018 @default.
- W4296311345 cites W3043063562 @default.
- W4296311345 cites W3045802155 @default.
- W4296311345 cites W3046496943 @default.
- W4296311345 cites W3049131298 @default.
- W4296311345 cites W3049701554 @default.
- W4296311345 cites W3083753334 @default.
- W4296311345 cites W3088122790 @default.
- W4296311345 cites W3088864412 @default.
- W4296311345 cites W3089265909 @default.
- W4296311345 cites W3092581351 @default.
- W4296311345 cites W3094315762 @default.
- W4296311345 cites W3095676075 @default.
- W4296311345 cites W3102456014 @default.
- W4296311345 cites W3125413540 @default.
- W4296311345 cites W3130172878 @default.
- W4296311345 cites W3132499588 @default.
- W4296311345 cites W3134166401 @default.
- W4296311345 cites W3134450678 @default.
- W4296311345 cites W3137180645 @default.
- W4296311345 cites W3155743974 @default.
- W4296311345 cites W3157722643 @default.
- W4296311345 cites W3160415184 @default.
- W4296311345 cites W3162351260 @default.
- W4296311345 cites W3174895029 @default.
- W4296311345 cites W3187123399 @default.
- W4296311345 cites W3196284293 @default.
- W4296311345 cites W3198568094 @default.
- W4296311345 cites W3214661809 @default.
- W4296311345 cites W3215027547 @default.
- W4296311345 cites W4200089862 @default.
- W4296311345 cites W4210361996 @default.
- W4296311345 cites W4212881316 @default.
- W4296311345 cites W4213106996 @default.
- W4296311345 cites W4221053572 @default.
- W4296311345 cites W4225113120 @default.
- W4296311345 cites W4296715321 @default.
- W4296311345 doi "https://doi.org/10.1016/j.aej.2022.09.016" @default.
- W4296311345 hasPublicationYear "2023" @default.
- W4296311345 type Work @default.
- W4296311345 citedByCount "2" @default.
- W4296311345 countsByYear W42963113452023 @default.
- W4296311345 crossrefType "journal-article" @default.
- W4296311345 hasAuthorship W4296311345A5015963665 @default.
- W4296311345 hasAuthorship W4296311345A5031647223 @default.
- W4296311345 hasAuthorship W4296311345A5038734409 @default.
- W4296311345 hasAuthorship W4296311345A5040168644 @default.
- W4296311345 hasAuthorship W4296311345A5071696004 @default.
- W4296311345 hasBestOaLocation W42963113451 @default.
- W4296311345 hasConcept C108583219 @default.
- W4296311345 hasConcept C111919701 @default.
- W4296311345 hasConcept C119857082 @default.
- W4296311345 hasConcept C126838900 @default.
- W4296311345 hasConcept C138885662 @default.
- W4296311345 hasConcept C142724271 @default.
- W4296311345 hasConcept C153180895 @default.
- W4296311345 hasConcept C154945302 @default.
- W4296311345 hasConcept C2776401178 @default.
- W4296311345 hasConcept C2779134260 @default.
- W4296311345 hasConcept C3008058167 @default.
- W4296311345 hasConcept C36454342 @default.
- W4296311345 hasConcept C41008148 @default.
- W4296311345 hasConcept C41895202 @default.
- W4296311345 hasConcept C50644808 @default.
- W4296311345 hasConcept C524204448 @default.
- W4296311345 hasConcept C52622490 @default.
- W4296311345 hasConcept C71924100 @default.
- W4296311345 hasConcept C73555534 @default.
- W4296311345 hasConcept C81363708 @default.
- W4296311345 hasConcept C94124525 @default.
- W4296311345 hasConcept C98045186 @default.
- W4296311345 hasConceptScore W4296311345C108583219 @default.
- W4296311345 hasConceptScore W4296311345C111919701 @default.
- W4296311345 hasConceptScore W4296311345C119857082 @default.
- W4296311345 hasConceptScore W4296311345C126838900 @default.