Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296311832> ?p ?o ?g. }
- W4296311832 endingPage "116819" @default.
- W4296311832 startingPage "116819" @default.
- W4296311832 abstract "• Substitutional solid solution Mn x Sn 1-x S 2 can be easily synthesized. • Mn 0.33 Sn 0.67 S 2 delivers the highest capacitance electrochemical performances. • The content of Mn plays a crucial role in the lattice parameter and electrochemical properties. • Mn 0.33 Sn 0.67 S 2 //AC achieves excellent energy density of 15.68 Wh kg −1 at 0.15 kW kg −1 . A variety of mixed metal sulfides of Mn x Sn 1-x S 2 nanoflowers were synthesized by a facile one-step template-free solvothermal method and their ability of capacitive energy storage were evaluated as potential supercapacitor electrode materials. Substitutional solid solutions of Mn x Sn 1-x S 2 with various chemical compositions can easily be produced by varying the Mn/Sn molar ratio in the reactants. Among these sulfides, Mn 0.33 Sn 0.67 S 2 exhibits the highest electrochemical performance with a high specific capacitance of 1118.92 F g −1 at 1 A g −1 , great rate capacity and superb cycling stability. Because of its increased electrochemical active sites, altered microstructure, and improved electrical conductivity brought on by lattice distortion and the synergistic effect of elemental substitution, Mn 0.33 Sn 0.67 S 2 exhibits good performance. What’s more, an asymmetric supercapacitor of Mn 0.33 Sn 0.67 S 2 //AC (activated carbon) possesses a high energy density (15.68 Wh kg −1 at 150.1 W kg −1 ). Thus, Mn doped tin sulfides highlight widely applicable to advance high-performance energy storage technology." @default.
- W4296311832 created "2022-09-20" @default.
- W4296311832 creator A5005708189 @default.
- W4296311832 creator A5011819435 @default.
- W4296311832 creator A5057674674 @default.
- W4296311832 creator A5081075360 @default.
- W4296311832 date "2022-10-01" @default.
- W4296311832 modified "2023-09-30" @default.
- W4296311832 title "Insights into mixed metal sulfides of MnxSn1-xS2 for high-performance supercapacitors" @default.
- W4296311832 cites W1525197209 @default.
- W4296311832 cites W1844899439 @default.
- W4296311832 cites W2001263099 @default.
- W4296311832 cites W2030605075 @default.
- W4296311832 cites W2032100925 @default.
- W4296311832 cites W2042759384 @default.
- W4296311832 cites W2107393114 @default.
- W4296311832 cites W2258661450 @default.
- W4296311832 cites W2346069244 @default.
- W4296311832 cites W2468973816 @default.
- W4296311832 cites W2510011062 @default.
- W4296311832 cites W2531242074 @default.
- W4296311832 cites W2564184932 @default.
- W4296311832 cites W2589979308 @default.
- W4296311832 cites W2590848567 @default.
- W4296311832 cites W2601357567 @default.
- W4296311832 cites W2604242135 @default.
- W4296311832 cites W2626863569 @default.
- W4296311832 cites W2735937847 @default.
- W4296311832 cites W2738409181 @default.
- W4296311832 cites W2741485304 @default.
- W4296311832 cites W2752426808 @default.
- W4296311832 cites W2757041592 @default.
- W4296311832 cites W2763015450 @default.
- W4296311832 cites W2774963146 @default.
- W4296311832 cites W2781587728 @default.
- W4296311832 cites W2782415686 @default.
- W4296311832 cites W2787216607 @default.
- W4296311832 cites W2788930672 @default.
- W4296311832 cites W2791697521 @default.
- W4296311832 cites W2791816924 @default.
- W4296311832 cites W2799463422 @default.
- W4296311832 cites W2802011892 @default.
- W4296311832 cites W2804630854 @default.
- W4296311832 cites W2806310327 @default.
- W4296311832 cites W2883731581 @default.
- W4296311832 cites W2884161954 @default.
- W4296311832 cites W2914968016 @default.
- W4296311832 cites W2914972337 @default.
- W4296311832 cites W2946144043 @default.
- W4296311832 cites W2947293880 @default.
- W4296311832 cites W2954142667 @default.
- W4296311832 cites W2971173222 @default.
- W4296311832 cites W2971487413 @default.
- W4296311832 cites W2974358360 @default.
- W4296311832 cites W2978647613 @default.
- W4296311832 cites W2990427979 @default.
- W4296311832 cites W3014427786 @default.
- W4296311832 cites W3021638345 @default.
- W4296311832 cites W3090861513 @default.
- W4296311832 cites W3128478811 @default.
- W4296311832 cites W3165202413 @default.
- W4296311832 cites W3185856990 @default.
- W4296311832 cites W3202955347 @default.
- W4296311832 cites W3204693089 @default.
- W4296311832 cites W3210141606 @default.
- W4296311832 cites W3215773424 @default.
- W4296311832 cites W3216570736 @default.
- W4296311832 cites W4205273846 @default.
- W4296311832 cites W4206236414 @default.
- W4296311832 cites W4210830078 @default.
- W4296311832 cites W4211136244 @default.
- W4296311832 cites W4213444712 @default.
- W4296311832 cites W4220735757 @default.
- W4296311832 cites W4220784182 @default.
- W4296311832 cites W4220831789 @default.
- W4296311832 cites W4224992792 @default.
- W4296311832 cites W4229002908 @default.
- W4296311832 cites W4281479161 @default.
- W4296311832 cites W4283387176 @default.
- W4296311832 cites W4283795121 @default.
- W4296311832 cites W4284966704 @default.
- W4296311832 cites W4285239788 @default.
- W4296311832 cites W4288885897 @default.
- W4296311832 doi "https://doi.org/10.1016/j.jelechem.2022.116819" @default.
- W4296311832 hasPublicationYear "2022" @default.
- W4296311832 type Work @default.
- W4296311832 citedByCount "5" @default.
- W4296311832 countsByYear W42963118322023 @default.
- W4296311832 crossrefType "journal-article" @default.
- W4296311832 hasAuthorship W4296311832A5005708189 @default.
- W4296311832 hasAuthorship W4296311832A5011819435 @default.
- W4296311832 hasAuthorship W4296311832A5057674674 @default.
- W4296311832 hasAuthorship W4296311832A5081075360 @default.
- W4296311832 hasConcept C147789679 @default.
- W4296311832 hasConcept C17525397 @default.
- W4296311832 hasConcept C178790620 @default.
- W4296311832 hasConcept C179104552 @default.
- W4296311832 hasConcept C185592680 @default.