Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296312401> ?p ?o ?g. }
- W4296312401 endingPage "132680" @default.
- W4296312401 startingPage "132680" @default.
- W4296312401 abstract "Developing a reliable and convenient method for monitoring the quality of black tea during fermentation could lead to a significant improvement in fermentation process. This work presented a rapid method based on surface-enhanced Raman spectroscopy (SERS) technology and chemometrics to determine the optimal fermentation stage and monitor the changes in 10 types of quality indicators of black tea throughout fermentation. First, the 10 different fermentation time points were clustered into 5 fermentation stages. Based on the SERS data, the fermentation stages were distinguished with an accuracy of 83.33% by one-dimensional ResNet18 (1D-ResNet18). Furthermore, important Raman peaks at 317.71, 619.59, 731.48, 956.08 and 1326.70 cm -1 were found for monitoring quality changes of black tea by density functional analysis and correlation analysis. The prediction r 2 for catechin (C) and epigallocatechin gallate (EGCG) reached 0.81 and 0.82, respectively, by integrated SERS with a one-dimensional convolutional neural network (1D-CNN). In conclusion, this study revealed the Raman fingerprint characteristics of key compounds associated with the fermentation quality of black tea, presenting an opportunity to quantify the quality changes of tea during fermentation using SERS data. With the monitoring method developed in this research, the optimal fermentation stage can be determined accurately, thus decreasing fermentation costs and improving tea quality. • A novel and highly interpretable SERS method for evaluation of black tea quality • A novel method for determining the optimal fermentation degree of black tea • SERS model simultaneously measure the content of nine quality indicators of black tea • Raman fingerprint peaks associated with the main components of black tea were found • Deep learning successfully mined feature of SERS for quantitative detection" @default.
- W4296312401 created "2022-09-20" @default.
- W4296312401 creator A5002026477 @default.
- W4296312401 creator A5012676375 @default.
- W4296312401 creator A5026679692 @default.
- W4296312401 creator A5038783849 @default.
- W4296312401 creator A5043522375 @default.
- W4296312401 creator A5053876250 @default.
- W4296312401 creator A5057778151 @default.
- W4296312401 creator A5063447635 @default.
- W4296312401 creator A5082125161 @default.
- W4296312401 creator A5084269286 @default.
- W4296312401 date "2022-12-01" @default.
- W4296312401 modified "2023-10-01" @default.
- W4296312401 title "Using surface-enhanced Raman spectroscopy combined with chemometrics for black tea quality assessment during its fermentation process" @default.
- W4296312401 cites W1981960523 @default.
- W4296312401 cites W1983300364 @default.
- W4296312401 cites W1985132516 @default.
- W4296312401 cites W1992229061 @default.
- W4296312401 cites W2003393751 @default.
- W4296312401 cites W2014436509 @default.
- W4296312401 cites W2088199122 @default.
- W4296312401 cites W2094938672 @default.
- W4296312401 cites W2103226867 @default.
- W4296312401 cites W2137514420 @default.
- W4296312401 cites W2160197181 @default.
- W4296312401 cites W2177986758 @default.
- W4296312401 cites W2322677267 @default.
- W4296312401 cites W263531807 @default.
- W4296312401 cites W2788334609 @default.
- W4296312401 cites W2792245367 @default.
- W4296312401 cites W2795759559 @default.
- W4296312401 cites W2883166799 @default.
- W4296312401 cites W2974743245 @default.
- W4296312401 cites W2981435894 @default.
- W4296312401 cites W2989529763 @default.
- W4296312401 cites W2994281462 @default.
- W4296312401 cites W3006292418 @default.
- W4296312401 cites W3010198126 @default.
- W4296312401 cites W3010558195 @default.
- W4296312401 cites W3047645504 @default.
- W4296312401 cites W3088127625 @default.
- W4296312401 cites W3120780657 @default.
- W4296312401 cites W3124905929 @default.
- W4296312401 cites W3153944678 @default.
- W4296312401 cites W3157447235 @default.
- W4296312401 cites W3165023750 @default.
- W4296312401 cites W3169268368 @default.
- W4296312401 cites W3172155353 @default.
- W4296312401 cites W3172247900 @default.
- W4296312401 cites W3193658761 @default.
- W4296312401 cites W3198539080 @default.
- W4296312401 cites W4210293159 @default.
- W4296312401 doi "https://doi.org/10.1016/j.snb.2022.132680" @default.
- W4296312401 hasPublicationYear "2022" @default.
- W4296312401 type Work @default.
- W4296312401 citedByCount "6" @default.
- W4296312401 countsByYear W42963124012023 @default.
- W4296312401 crossrefType "journal-article" @default.
- W4296312401 hasAuthorship W4296312401A5002026477 @default.
- W4296312401 hasAuthorship W4296312401A5012676375 @default.
- W4296312401 hasAuthorship W4296312401A5026679692 @default.
- W4296312401 hasAuthorship W4296312401A5038783849 @default.
- W4296312401 hasAuthorship W4296312401A5043522375 @default.
- W4296312401 hasAuthorship W4296312401A5053876250 @default.
- W4296312401 hasAuthorship W4296312401A5057778151 @default.
- W4296312401 hasAuthorship W4296312401A5063447635 @default.
- W4296312401 hasAuthorship W4296312401A5082125161 @default.
- W4296312401 hasAuthorship W4296312401A5084269286 @default.
- W4296312401 hasConcept C100544194 @default.
- W4296312401 hasConcept C107872376 @default.
- W4296312401 hasConcept C111919701 @default.
- W4296312401 hasConcept C113196181 @default.
- W4296312401 hasConcept C120665830 @default.
- W4296312401 hasConcept C121332964 @default.
- W4296312401 hasConcept C127413603 @default.
- W4296312401 hasConcept C151304367 @default.
- W4296312401 hasConcept C169573571 @default.
- W4296312401 hasConcept C183696295 @default.
- W4296312401 hasConcept C185592680 @default.
- W4296312401 hasConcept C192562407 @default.
- W4296312401 hasConcept C21880701 @default.
- W4296312401 hasConcept C2777790068 @default.
- W4296312401 hasConcept C2992231244 @default.
- W4296312401 hasConcept C31903555 @default.
- W4296312401 hasConcept C32891209 @default.
- W4296312401 hasConcept C39432304 @default.
- W4296312401 hasConcept C40003534 @default.
- W4296312401 hasConcept C41008148 @default.
- W4296312401 hasConcept C43617362 @default.
- W4296312401 hasConcept C62520636 @default.
- W4296312401 hasConcept C98045186 @default.
- W4296312401 hasConceptScore W4296312401C100544194 @default.
- W4296312401 hasConceptScore W4296312401C107872376 @default.
- W4296312401 hasConceptScore W4296312401C111919701 @default.
- W4296312401 hasConceptScore W4296312401C113196181 @default.
- W4296312401 hasConceptScore W4296312401C120665830 @default.
- W4296312401 hasConceptScore W4296312401C121332964 @default.