Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296335143> ?p ?o ?g. }
- W4296335143 endingPage "120401" @default.
- W4296335143 startingPage "120401" @default.
- W4296335143 abstract "The relation of transport properties and the molecular interactions in binary mixtures was studied. The self-diffusion coefficient, Maxwell–Stefan as well as Fickian mutual diffusion coefficient, shear viscosity, and thermal conductivity of liquid binary simple mixtures were therefore sampled using molecular dynamics simulations. The mixtures were described by the Lennard-Jones potential. The molecular interaction parameters were chosen such that a large variety of mixture behavior was covered. The two components had the same size parameter in all cases, but different dispersion energies. Moreover, the cross-interaction parameter used in the modified Lorentz-Berthelot combination rule was varied such that the resulting mixtures showed different types of phase behavior: ideal, high- and low-boiling azeotrope. The results are discussed using conformal solution theory as a link between the molecular interactions in the mixtures and the macroscopic properties. Moreover, the applicability of Rosenfeld’s entropy scaling is tested. Despite the important differences of the studied mixtures regarding their molecular interactions and the large pressure, temperature, and composition range considered, a practically monovariate relation of these properties with respect to the configurational entropy is observed. Yet, the quality of the approximation differs for the studied properties." @default.
- W4296335143 created "2022-09-20" @default.
- W4296335143 creator A5039117244 @default.
- W4296335143 creator A5039993321 @default.
- W4296335143 creator A5065003427 @default.
- W4296335143 date "2022-12-01" @default.
- W4296335143 modified "2023-10-01" @default.
- W4296335143 title "Transport properties of binary Lennard-Jones mixtures: Insights from entropy scaling and conformal solution theory" @default.
- W4296335143 cites W1668732012 @default.
- W4296335143 cites W1719199 @default.
- W4296335143 cites W1828393393 @default.
- W4296335143 cites W1964878278 @default.
- W4296335143 cites W1967820748 @default.
- W4296335143 cites W1975352716 @default.
- W4296335143 cites W1976038705 @default.
- W4296335143 cites W1979550388 @default.
- W4296335143 cites W1979916763 @default.
- W4296335143 cites W1981068193 @default.
- W4296335143 cites W1984104023 @default.
- W4296335143 cites W1984271832 @default.
- W4296335143 cites W1993913798 @default.
- W4296335143 cites W1998745612 @default.
- W4296335143 cites W2006755239 @default.
- W4296335143 cites W2018763953 @default.
- W4296335143 cites W2022369098 @default.
- W4296335143 cites W2024161905 @default.
- W4296335143 cites W2033049473 @default.
- W4296335143 cites W2037017841 @default.
- W4296335143 cites W2045561292 @default.
- W4296335143 cites W2050265652 @default.
- W4296335143 cites W2053363788 @default.
- W4296335143 cites W2055544874 @default.
- W4296335143 cites W2058836701 @default.
- W4296335143 cites W2067417742 @default.
- W4296335143 cites W2074415589 @default.
- W4296335143 cites W2076918690 @default.
- W4296335143 cites W2077067709 @default.
- W4296335143 cites W2079064201 @default.
- W4296335143 cites W2079094630 @default.
- W4296335143 cites W2087642941 @default.
- W4296335143 cites W2093283925 @default.
- W4296335143 cites W2093556696 @default.
- W4296335143 cites W2100248238 @default.
- W4296335143 cites W2123705550 @default.
- W4296335143 cites W2127563950 @default.
- W4296335143 cites W2135038233 @default.
- W4296335143 cites W2292469596 @default.
- W4296335143 cites W2304325242 @default.
- W4296335143 cites W2315585064 @default.
- W4296335143 cites W2321094000 @default.
- W4296335143 cites W2329549016 @default.
- W4296335143 cites W2332088872 @default.
- W4296335143 cites W2530527715 @default.
- W4296335143 cites W2594377648 @default.
- W4296335143 cites W2748212797 @default.
- W4296335143 cites W2788124719 @default.
- W4296335143 cites W2788505632 @default.
- W4296335143 cites W2791637661 @default.
- W4296335143 cites W2800397359 @default.
- W4296335143 cites W2883881702 @default.
- W4296335143 cites W2887122896 @default.
- W4296335143 cites W2888403058 @default.
- W4296335143 cites W2894876733 @default.
- W4296335143 cites W2895318621 @default.
- W4296335143 cites W2898144038 @default.
- W4296335143 cites W2899013536 @default.
- W4296335143 cites W2905488291 @default.
- W4296335143 cites W2912400396 @default.
- W4296335143 cites W2914891664 @default.
- W4296335143 cites W2939256725 @default.
- W4296335143 cites W2944037643 @default.
- W4296335143 cites W2954726078 @default.
- W4296335143 cites W2963367062 @default.
- W4296335143 cites W2964225073 @default.
- W4296335143 cites W2967185681 @default.
- W4296335143 cites W2980408268 @default.
- W4296335143 cites W2988386370 @default.
- W4296335143 cites W2995123572 @default.
- W4296335143 cites W2995395520 @default.
- W4296335143 cites W2997259488 @default.
- W4296335143 cites W2999614667 @default.
- W4296335143 cites W3002166511 @default.
- W4296335143 cites W3012244450 @default.
- W4296335143 cites W3012742508 @default.
- W4296335143 cites W3017082821 @default.
- W4296335143 cites W3030702696 @default.
- W4296335143 cites W3038622970 @default.
- W4296335143 cites W3082610296 @default.
- W4296335143 cites W3094282093 @default.
- W4296335143 cites W3099228278 @default.
- W4296335143 cites W3172708141 @default.
- W4296335143 cites W3198025250 @default.
- W4296335143 cites W4205620330 @default.
- W4296335143 cites W4226366847 @default.
- W4296335143 cites W4235157709 @default.
- W4296335143 cites W4247200038 @default.
- W4296335143 cites W4297898237 @default.
- W4296335143 doi "https://doi.org/10.1016/j.molliq.2022.120401" @default.