Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296351595> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4296351595 endingPage "54" @default.
- W4296351595 startingPage "54" @default.
- W4296351595 abstract "Phishing is still a major security threat in cyberspace. In phishing, attackers steal critical information from victims by presenting a spoofing/fake site that appears to be a visual clone of a legitimate site. Several Unicode characters are visually identical to ASCII characters. This similarity in characters is generally known as homoglyphs. Malicious adversaries utilize homoglyphs in URLs and DNS domains to target organizations. To reduce the risks caused by phishing attacks, effective ways of detecting phishing websites are urgently required. This paper proposes a homoglyph attack detection model that combines a hash function and machine learning. There are two phases to the model approach. The machine was being trained during the development phase. The deployment phase involved deploying the model with a Java interface and testing the outcomes through actual user interaction. The results are more accurate when the URL is hashed, as any little changes to the URL can be recognized. The homoglyph detector can be developed as a stand-alone software that is used as the initial step in requesting a webpage as it enhances browser security and protects websites from phishing attempts. To verify the effectiveness, we compared the proposed model on several criteria to existing phishing detection methods. By using the hash function, the proposed security features increase the overall security of the homoglyph attack detection in terms of accuracy, integrity, and availability. The experiment results showed that the model can detect phishing sites with an accuracy of 99.8% using Random Forest, and the hash function improves the accuracy of homoglyph attack detection." @default.
- W4296351595 created "2022-09-20" @default.
- W4296351595 creator A5019961423 @default.
- W4296351595 creator A5022118792 @default.
- W4296351595 creator A5029026113 @default.
- W4296351595 creator A5036961841 @default.
- W4296351595 creator A5045950024 @default.
- W4296351595 creator A5051825014 @default.
- W4296351595 creator A5059361866 @default.
- W4296351595 creator A5076792261 @default.
- W4296351595 creator A5080309800 @default.
- W4296351595 date "2022-09-16" @default.
- W4296351595 modified "2023-10-18" @default.
- W4296351595 title "Homoglyph Attack Detection Model Using Machine Learning and Hash Function" @default.
- W4296351595 cites W1947748514 @default.
- W4296351595 cites W1984868580 @default.
- W4296351595 cites W1987844732 @default.
- W4296351595 cites W2070896531 @default.
- W4296351595 cites W2126050324 @default.
- W4296351595 cites W2524841068 @default.
- W4296351595 cites W2588813228 @default.
- W4296351595 cites W2739066632 @default.
- W4296351595 cites W2774871243 @default.
- W4296351595 cites W2783499216 @default.
- W4296351595 cites W2801182074 @default.
- W4296351595 cites W2801883820 @default.
- W4296351595 cites W2807459182 @default.
- W4296351595 cites W2808138572 @default.
- W4296351595 cites W2889851289 @default.
- W4296351595 cites W2890718808 @default.
- W4296351595 cites W2892847381 @default.
- W4296351595 cites W2894350870 @default.
- W4296351595 cites W2914801588 @default.
- W4296351595 cites W2947265974 @default.
- W4296351595 cites W2948344613 @default.
- W4296351595 cites W2963635116 @default.
- W4296351595 cites W2980676478 @default.
- W4296351595 cites W3039927772 @default.
- W4296351595 cites W3184003609 @default.
- W4296351595 doi "https://doi.org/10.3390/jsan11030054" @default.
- W4296351595 hasPublicationYear "2022" @default.
- W4296351595 type Work @default.
- W4296351595 citedByCount "1" @default.
- W4296351595 countsByYear W42963515952023 @default.
- W4296351595 crossrefType "journal-article" @default.
- W4296351595 hasAuthorship W4296351595A5019961423 @default.
- W4296351595 hasAuthorship W4296351595A5022118792 @default.
- W4296351595 hasAuthorship W4296351595A5029026113 @default.
- W4296351595 hasAuthorship W4296351595A5036961841 @default.
- W4296351595 hasAuthorship W4296351595A5045950024 @default.
- W4296351595 hasAuthorship W4296351595A5051825014 @default.
- W4296351595 hasAuthorship W4296351595A5059361866 @default.
- W4296351595 hasAuthorship W4296351595A5076792261 @default.
- W4296351595 hasAuthorship W4296351595A5080309800 @default.
- W4296351595 hasBestOaLocation W42963515951 @default.
- W4296351595 hasConcept C110875604 @default.
- W4296351595 hasConcept C119857082 @default.
- W4296351595 hasConcept C124101348 @default.
- W4296351595 hasConcept C136764020 @default.
- W4296351595 hasConcept C154945302 @default.
- W4296351595 hasConcept C167900197 @default.
- W4296351595 hasConcept C38652104 @default.
- W4296351595 hasConcept C41008148 @default.
- W4296351595 hasConcept C83860907 @default.
- W4296351595 hasConcept C99138194 @default.
- W4296351595 hasConceptScore W4296351595C110875604 @default.
- W4296351595 hasConceptScore W4296351595C119857082 @default.
- W4296351595 hasConceptScore W4296351595C124101348 @default.
- W4296351595 hasConceptScore W4296351595C136764020 @default.
- W4296351595 hasConceptScore W4296351595C154945302 @default.
- W4296351595 hasConceptScore W4296351595C167900197 @default.
- W4296351595 hasConceptScore W4296351595C38652104 @default.
- W4296351595 hasConceptScore W4296351595C41008148 @default.
- W4296351595 hasConceptScore W4296351595C83860907 @default.
- W4296351595 hasConceptScore W4296351595C99138194 @default.
- W4296351595 hasIssue "3" @default.
- W4296351595 hasLocation W42963515951 @default.
- W4296351595 hasOpenAccess W4296351595 @default.
- W4296351595 hasPrimaryLocation W42963515951 @default.
- W4296351595 hasRelatedWork W1491018131 @default.
- W4296351595 hasRelatedWork W1524184433 @default.
- W4296351595 hasRelatedWork W187449784 @default.
- W4296351595 hasRelatedWork W2174518195 @default.
- W4296351595 hasRelatedWork W244870211 @default.
- W4296351595 hasRelatedWork W2754929023 @default.
- W4296351595 hasRelatedWork W2956141080 @default.
- W4296351595 hasRelatedWork W3175764924 @default.
- W4296351595 hasRelatedWork W3184656183 @default.
- W4296351595 hasRelatedWork W4289792978 @default.
- W4296351595 hasVolume "11" @default.
- W4296351595 isParatext "false" @default.
- W4296351595 isRetracted "false" @default.
- W4296351595 workType "article" @default.