Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296366985> ?p ?o ?g. }
- W4296366985 endingPage "32" @default.
- W4296366985 startingPage "1" @default.
- W4296366985 abstract "Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind the social media texts or reviews, which has been a fundamental application to the real-world society. Since the early 2010s, ABSA has achieved extraordinarily high accuracy with various deep neural models. However, existing ABSA models with strong in-house performances may fail to generalize to some challenging cases where the contexts are variable, i.e., low robustness to real-world environments. In this study, we propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training. First, we strengthen the current best-robust syntax-aware models by further incorporating the rich external syntactic dependencies and the labels with aspect simultaneously with a universal-syntax graph convolutional network. In the corpus perspective, we propose to automatically induce high-quality synthetic training data with various types, allowing models to learn sufficient inductive bias for better robustness. Last, we based on the rich pseudo data perform adversarial training to enhance the resistance to the context perturbation and meanwhile employ contrastive learning to reinforce the representations of instances with contrastive sentiments. Extensive robustness evaluations are conducted. The results demonstrate that our enhanced syntax-aware model achieves better robustness performances than all the state-of-the-art baselines. By additionally incorporating our synthetic corpus, the robust testing results are pushed with around 10% accuracy, which are then further improved by installing the advanced training strategies. In-depth analyses are presented for revealing the factors influencing the ABSA robustness." @default.
- W4296366985 created "2022-09-20" @default.
- W4296366985 creator A5004953265 @default.
- W4296366985 creator A5030792927 @default.
- W4296366985 creator A5055938662 @default.
- W4296366985 creator A5058877618 @default.
- W4296366985 creator A5065789784 @default.
- W4296366985 creator A5085132030 @default.
- W4296366985 date "2022-12-21" @default.
- W4296366985 modified "2023-10-13" @default.
- W4296366985 title "On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model, Data, and Training" @default.
- W4296366985 cites W1579917587 @default.
- W4296366985 cites W1832693441 @default.
- W4296366985 cites W2022204871 @default.
- W4296366985 cites W2064675550 @default.
- W4296366985 cites W2072379976 @default.
- W4296366985 cites W2081580037 @default.
- W4296366985 cites W2250539671 @default.
- W4296366985 cites W2251124635 @default.
- W4296366985 cites W2251294039 @default.
- W4296366985 cites W2251648804 @default.
- W4296366985 cites W2253519362 @default.
- W4296366985 cites W2465978385 @default.
- W4296366985 cites W2473593971 @default.
- W4296366985 cites W2562607067 @default.
- W4296366985 cites W2604205681 @default.
- W4296366985 cites W2757057870 @default.
- W4296366985 cites W2799007037 @default.
- W4296366985 cites W2799044502 @default.
- W4296366985 cites W2799194071 @default.
- W4296366985 cites W2810865311 @default.
- W4296366985 cites W2895547478 @default.
- W4296366985 cites W2946015932 @default.
- W4296366985 cites W2950896474 @default.
- W4296366985 cites W2962808042 @default.
- W4296366985 cites W2963168371 @default.
- W4296366985 cites W2963240575 @default.
- W4296366985 cites W2963909901 @default.
- W4296366985 cites W2963969878 @default.
- W4296366985 cites W2970583420 @default.
- W4296366985 cites W2971014768 @default.
- W4296366985 cites W2971220558 @default.
- W4296366985 cites W2982455176 @default.
- W4296366985 cites W2997087088 @default.
- W4296366985 cites W3005043037 @default.
- W4296366985 cites W3035380217 @default.
- W4296366985 cites W3035524453 @default.
- W4296366985 cites W3035529900 @default.
- W4296366985 cites W3035740499 @default.
- W4296366985 cites W3087231533 @default.
- W4296366985 cites W3093816678 @default.
- W4296366985 cites W3099766420 @default.
- W4296366985 cites W3100060077 @default.
- W4296366985 cites W3100561719 @default.
- W4296366985 cites W3102537153 @default.
- W4296366985 cites W3104213339 @default.
- W4296366985 cites W3105604018 @default.
- W4296366985 cites W3108655343 @default.
- W4296366985 cites W3117925982 @default.
- W4296366985 cites W3119339920 @default.
- W4296366985 cites W3155943137 @default.
- W4296366985 cites W3173211653 @default.
- W4296366985 cites W3173293897 @default.
- W4296366985 cites W3173666333 @default.
- W4296366985 cites W3190684574 @default.
- W4296366985 cites W3206386021 @default.
- W4296366985 cites W4224311586 @default.
- W4296366985 cites W4226025159 @default.
- W4296366985 cites W4285246823 @default.
- W4296366985 doi "https://doi.org/10.1145/3564281" @default.
- W4296366985 hasPublicationYear "2022" @default.
- W4296366985 type Work @default.
- W4296366985 citedByCount "5" @default.
- W4296366985 countsByYear W42963669852023 @default.
- W4296366985 crossrefType "journal-article" @default.
- W4296366985 hasAuthorship W4296366985A5004953265 @default.
- W4296366985 hasAuthorship W4296366985A5030792927 @default.
- W4296366985 hasAuthorship W4296366985A5055938662 @default.
- W4296366985 hasAuthorship W4296366985A5058877618 @default.
- W4296366985 hasAuthorship W4296366985A5065789784 @default.
- W4296366985 hasAuthorship W4296366985A5085132030 @default.
- W4296366985 hasBestOaLocation W42963669851 @default.
- W4296366985 hasConcept C104317684 @default.
- W4296366985 hasConcept C119857082 @default.
- W4296366985 hasConcept C154945302 @default.
- W4296366985 hasConcept C185592680 @default.
- W4296366985 hasConcept C204321447 @default.
- W4296366985 hasConcept C41008148 @default.
- W4296366985 hasConcept C51632099 @default.
- W4296366985 hasConcept C55493867 @default.
- W4296366985 hasConcept C63479239 @default.
- W4296366985 hasConcept C66402592 @default.
- W4296366985 hasConcept C81363708 @default.
- W4296366985 hasConceptScore W4296366985C104317684 @default.
- W4296366985 hasConceptScore W4296366985C119857082 @default.
- W4296366985 hasConceptScore W4296366985C154945302 @default.
- W4296366985 hasConceptScore W4296366985C185592680 @default.
- W4296366985 hasConceptScore W4296366985C204321447 @default.