Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296425702> ?p ?o ?g. }
- W4296425702 endingPage "100785" @default.
- W4296425702 startingPage "100763" @default.
- W4296425702 abstract "The novel coronavirus disease 2019 (COVID-19) added tremendous pressure on healthcare services worldwide. COVID-19 early detection is of the utmost importance to control the spread of the coronavirus pandemic and to reduce pressure on health services. There have been many approaches to detect COVID-19; the most commonly used one is the nasal swab technique. Before that was available chest X-ray radiographs were used. X-ray radiographs are a primary care method to reveal lung infections, which allows physicians to assess and plan a course of treatment. X-ray machines are prevalent, which makes this method a preferable first approach for the detection of new diseases. However, this method requires a radiologist to assess each chest X-ray image. Therefore, different automated methods using machine learning techniques have been proposed to assist in speeding up diagnoses and improving the decision-making process. In this paper, we review deep learning approaches for COVID-19 detection using chest X-ray images. We found that the majority of deep learning approaches for COVID-19 detection use transfer learning. A discussion of the limitations and challenges of deep learning in radiography images is presented. Finally, we provide potential improvements for higher accuracy and generalisability when using deep learning models for COVID-19 detection." @default.
- W4296425702 created "2022-09-20" @default.
- W4296425702 creator A5005398451 @default.
- W4296425702 creator A5016115865 @default.
- W4296425702 creator A5016883774 @default.
- W4296425702 creator A5049682044 @default.
- W4296425702 creator A5078111963 @default.
- W4296425702 date "2022-01-01" @default.
- W4296425702 modified "2023-10-18" @default.
- W4296425702 title "A Comprehensive Review of Deep Learning-Based Methods for COVID-19 Detection Using Chest X-Ray Images" @default.
- W4296425702 cites W1607979445 @default.
- W4296425702 cites W1905983616 @default.
- W4296425702 cites W1964762821 @default.
- W4296425702 cites W1971877752 @default.
- W4296425702 cites W1994062553 @default.
- W4296425702 cites W2024798729 @default.
- W4296425702 cites W2039051707 @default.
- W4296425702 cites W2053769279 @default.
- W4296425702 cites W2061438946 @default.
- W4296425702 cites W2064675550 @default.
- W4296425702 cites W2069816479 @default.
- W4296425702 cites W2074780813 @default.
- W4296425702 cites W2089575713 @default.
- W4296425702 cites W2097117768 @default.
- W4296425702 cites W2108598243 @default.
- W4296425702 cites W2108892110 @default.
- W4296425702 cites W2142514727 @default.
- W4296425702 cites W2148143831 @default.
- W4296425702 cites W2152195021 @default.
- W4296425702 cites W2162915993 @default.
- W4296425702 cites W2165698076 @default.
- W4296425702 cites W2183341477 @default.
- W4296425702 cites W2194775991 @default.
- W4296425702 cites W2346062110 @default.
- W4296425702 cites W2531409750 @default.
- W4296425702 cites W2570343428 @default.
- W4296425702 cites W2590762055 @default.
- W4296425702 cites W2592929672 @default.
- W4296425702 cites W2732026016 @default.
- W4296425702 cites W2736326359 @default.
- W4296425702 cites W2752782242 @default.
- W4296425702 cites W2755129255 @default.
- W4296425702 cites W2777186991 @default.
- W4296425702 cites W2788633781 @default.
- W4296425702 cites W2795912842 @default.
- W4296425702 cites W28412257 @default.
- W4296425702 cites W2894010682 @default.
- W4296425702 cites W2934399013 @default.
- W4296425702 cites W2947350869 @default.
- W4296425702 cites W2963125010 @default.
- W4296425702 cites W2963163009 @default.
- W4296425702 cites W2963446712 @default.
- W4296425702 cites W2963466845 @default.
- W4296425702 cites W2964081807 @default.
- W4296425702 cites W2964271799 @default.
- W4296425702 cites W2964350391 @default.
- W4296425702 cites W3011584320 @default.
- W4296425702 cites W3013130152 @default.
- W4296425702 cites W3013277995 @default.
- W4296425702 cites W3013601031 @default.
- W4296425702 cites W3015658132 @default.
- W4296425702 cites W3016610966 @default.
- W4296425702 cites W3017185871 @default.
- W4296425702 cites W3017855299 @default.
- W4296425702 cites W3019531985 @default.
- W4296425702 cites W3021001507 @default.
- W4296425702 cites W3021098842 @default.
- W4296425702 cites W3023402713 @default.
- W4296425702 cites W3026085071 @default.
- W4296425702 cites W3026419502 @default.
- W4296425702 cites W3027390800 @default.
- W4296425702 cites W3030621456 @default.
- W4296425702 cites W3033616466 @default.
- W4296425702 cites W3035738719 @default.
- W4296425702 cites W3036552116 @default.
- W4296425702 cites W3036638392 @default.
- W4296425702 cites W3037662149 @default.
- W4296425702 cites W3038744550 @default.
- W4296425702 cites W3070377305 @default.
- W4296425702 cites W3082003320 @default.
- W4296425702 cites W3083161015 @default.
- W4296425702 cites W3088864412 @default.
- W4296425702 cites W3089326051 @default.
- W4296425702 cites W3090867153 @default.
- W4296425702 cites W3097211536 @default.
- W4296425702 cites W3101156210 @default.
- W4296425702 cites W3105070630 @default.
- W4296425702 cites W3105081694 @default.
- W4296425702 cites W3105282616 @default.
- W4296425702 cites W3106539405 @default.
- W4296425702 cites W3107422599 @default.
- W4296425702 cites W3108656121 @default.
- W4296425702 cites W3114062942 @default.
- W4296425702 cites W3121339497 @default.
- W4296425702 cites W3122236046 @default.
- W4296425702 cites W3125080855 @default.
- W4296425702 cites W3128023323 @default.
- W4296425702 cites W3128741952 @default.