Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296442011> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4296442011 abstract "Deep learning has gained remarkable popularity due to its widespread success in a number of practical applications such as image classification and speech recognition. In this paper, we consider the application of deep learning to DOA estimation problem in the presence of array imperfections. Firstly, through spatially overcomplete formulation, the DOA estimation problem is converted to a sparse linear inverse problem, where one seeks to recover a sparse signal from a few noisy linear measurements. Then an iterative sparse signal recovery algorithm, iterative shrinkage/thresholding algorithm(ISTA), is “unfolded” to form an interpretable and learnable deep network-learned ISTA(LISTA). LISTA is applied to recover the DOA spectrum after trained with vast amounts of training data. We find that LISTA is of good robustness against noise and array imperfections due to the training procedure. Comprehensive simulations and experiments have been carried out, and the superiority of the proposed method can be clearly seen." @default.
- W4296442011 created "2022-09-20" @default.
- W4296442011 creator A5022645707 @default.
- W4296442011 creator A5038664450 @default.
- W4296442011 creator A5056645000 @default.
- W4296442011 date "2022-07-20" @default.
- W4296442011 modified "2023-09-29" @default.
- W4296442011 title "DOA Estimation Using an Unfolded Deep Network in the Presence of Array Imperfections" @default.
- W4296442011 cites W1814500939 @default.
- W4296442011 cites W1995714794 @default.
- W4296442011 cites W2035657168 @default.
- W4296442011 cites W2068039805 @default.
- W4296442011 cites W2103263585 @default.
- W4296442011 cites W2104266700 @default.
- W4296442011 cites W2113638573 @default.
- W4296442011 cites W2146151871 @default.
- W4296442011 cites W2146709885 @default.
- W4296442011 cites W2158252006 @default.
- W4296442011 cites W2431353983 @default.
- W4296442011 cites W2596829020 @default.
- W4296442011 cites W2619204584 @default.
- W4296442011 cites W2784187484 @default.
- W4296442011 cites W2810871807 @default.
- W4296442011 cites W2888269953 @default.
- W4296442011 cites W2890488649 @default.
- W4296442011 cites W2897361856 @default.
- W4296442011 cites W2915199461 @default.
- W4296442011 cites W2949360721 @default.
- W4296442011 cites W2978977033 @default.
- W4296442011 cites W3034325280 @default.
- W4296442011 cites W3080716055 @default.
- W4296442011 cites W3100730608 @default.
- W4296442011 doi "https://doi.org/10.1109/icsip55141.2022.9886344" @default.
- W4296442011 hasPublicationYear "2022" @default.
- W4296442011 type Work @default.
- W4296442011 citedByCount "2" @default.
- W4296442011 countsByYear W42964420112022 @default.
- W4296442011 countsByYear W42964420112023 @default.
- W4296442011 crossrefType "proceedings-article" @default.
- W4296442011 hasAuthorship W4296442011A5022645707 @default.
- W4296442011 hasAuthorship W4296442011A5038664450 @default.
- W4296442011 hasAuthorship W4296442011A5056645000 @default.
- W4296442011 hasLocation W42964420111 @default.
- W4296442011 hasOpenAccess W4296442011 @default.
- W4296442011 hasPrimaryLocation W42964420111 @default.
- W4296442011 hasRelatedWork W2033000528 @default.
- W4296442011 hasRelatedWork W2116121670 @default.
- W4296442011 hasRelatedWork W2160069326 @default.
- W4296442011 hasRelatedWork W2525018960 @default.
- W4296442011 hasRelatedWork W2773120646 @default.
- W4296442011 hasRelatedWork W2792520941 @default.
- W4296442011 hasRelatedWork W2900171461 @default.
- W4296442011 hasRelatedWork W3175271736 @default.
- W4296442011 hasRelatedWork W4200631632 @default.
- W4296442011 hasRelatedWork W4226084447 @default.
- W4296442011 isParatext "false" @default.
- W4296442011 isRetracted "false" @default.
- W4296442011 workType "article" @default.