Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296444080> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4296444080 abstract "Non-communicable diseases such as diabetes and hypertension account for nearly half of all early deaths every year. Diabetes is a disease that necessitates continuous monitoring of blood sugar levels, particularly glucose, in order to effectively mitigate the emerging health complications. Self-management of the disease, particularly maintaining glucose levels in the blood within a specific range, is critical for treatment. This involves actively monitoring blood glucose and insulin levels, as well as managing diet and physical activity. Diabetes advancements and self-administration applications have made it easier for patients to gain access to more relevant information. The ability of Machine Learning (ML) techniques to solve complex tasks in dynamic environments and with dynamic data has contributed to its success in the study of diseases such as diabetes. This research study has attempted to design and develop a personal healthcare system, which can use the data generated from daily activities and other significant parameters to monitor the blood glucose level and provide proper report representation online. The Machine Learning (ML) technique has been used to detect non-communicable diseases at an early stage. The proposed research study has surveyed previous relevant literatures in order to understand the approaches used previously for the detection or presence of disease in the human body. There are various methods to determine blood glucose levels non-invasively, but a universally acceptable method with good accuracy and precision is not yet available. This paper emphasized about using Random Forest, a supervised machine learning algorithm to determine the probability of occurrence of diabetes mellitus to take precautions accordingly." @default.
- W4296444080 created "2022-09-20" @default.
- W4296444080 creator A5027873596 @default.
- W4296444080 creator A5070868863 @default.
- W4296444080 creator A5086313714 @default.
- W4296444080 creator A5089291724 @default.
- W4296444080 date "2022-08-17" @default.
- W4296444080 modified "2023-10-18" @default.
- W4296444080 title "Early Diabetes Prediction using Random Forest" @default.
- W4296444080 cites W1941659294 @default.
- W4296444080 cites W2050503581 @default.
- W4296444080 cites W2118414527 @default.
- W4296444080 cites W2131414141 @default.
- W4296444080 cites W2154777558 @default.
- W4296444080 cites W2155653793 @default.
- W4296444080 cites W2784039032 @default.
- W4296444080 cites W2891374184 @default.
- W4296444080 cites W3031935524 @default.
- W4296444080 cites W3091541628 @default.
- W4296444080 cites W3158087093 @default.
- W4296444080 cites W4280635966 @default.
- W4296444080 doi "https://doi.org/10.1109/icesc54411.2022.9885683" @default.
- W4296444080 hasPublicationYear "2022" @default.
- W4296444080 type Work @default.
- W4296444080 citedByCount "1" @default.
- W4296444080 countsByYear W42964440802023 @default.
- W4296444080 crossrefType "proceedings-article" @default.
- W4296444080 hasAuthorship W4296444080A5027873596 @default.
- W4296444080 hasAuthorship W4296444080A5070868863 @default.
- W4296444080 hasAuthorship W4296444080A5086313714 @default.
- W4296444080 hasAuthorship W4296444080A5089291724 @default.
- W4296444080 hasConcept C119857082 @default.
- W4296444080 hasConcept C126322002 @default.
- W4296444080 hasConcept C134018914 @default.
- W4296444080 hasConcept C154945302 @default.
- W4296444080 hasConcept C169258074 @default.
- W4296444080 hasConcept C177713679 @default.
- W4296444080 hasConcept C2776217022 @default.
- W4296444080 hasConcept C2777180221 @default.
- W4296444080 hasConcept C2779134260 @default.
- W4296444080 hasConcept C2780485761 @default.
- W4296444080 hasConcept C41008148 @default.
- W4296444080 hasConcept C555293320 @default.
- W4296444080 hasConcept C71924100 @default.
- W4296444080 hasConceptScore W4296444080C119857082 @default.
- W4296444080 hasConceptScore W4296444080C126322002 @default.
- W4296444080 hasConceptScore W4296444080C134018914 @default.
- W4296444080 hasConceptScore W4296444080C154945302 @default.
- W4296444080 hasConceptScore W4296444080C169258074 @default.
- W4296444080 hasConceptScore W4296444080C177713679 @default.
- W4296444080 hasConceptScore W4296444080C2776217022 @default.
- W4296444080 hasConceptScore W4296444080C2777180221 @default.
- W4296444080 hasConceptScore W4296444080C2779134260 @default.
- W4296444080 hasConceptScore W4296444080C2780485761 @default.
- W4296444080 hasConceptScore W4296444080C41008148 @default.
- W4296444080 hasConceptScore W4296444080C555293320 @default.
- W4296444080 hasConceptScore W4296444080C71924100 @default.
- W4296444080 hasLocation W42964440801 @default.
- W4296444080 hasOpenAccess W4296444080 @default.
- W4296444080 hasPrimaryLocation W42964440801 @default.
- W4296444080 hasRelatedWork W1546989560 @default.
- W4296444080 hasRelatedWork W1924178503 @default.
- W4296444080 hasRelatedWork W2131057798 @default.
- W4296444080 hasRelatedWork W3138135724 @default.
- W4296444080 hasRelatedWork W3171520305 @default.
- W4296444080 hasRelatedWork W3177289888 @default.
- W4296444080 hasRelatedWork W3193043704 @default.
- W4296444080 hasRelatedWork W4285141181 @default.
- W4296444080 hasRelatedWork W4308716060 @default.
- W4296444080 hasRelatedWork W4386259002 @default.
- W4296444080 isParatext "false" @default.
- W4296444080 isRetracted "false" @default.
- W4296444080 workType "article" @default.