Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296462982> ?p ?o ?g. }
- W4296462982 endingPage "11818" @default.
- W4296462982 startingPage "11818" @default.
- W4296462982 abstract "The openly released and measured data from automatic hydrological and water quality stations in China provide strong data support for water environmental protection management and scientific research. However, current public data on hydrology and water quality only provide real-time data through data tables in a shared page. To excavate the supporting effect of these data on water environmental protection, this paper designs a water-quality-prediction and pollution-risk early-warning system. In this system, crawler technology was used for data collection from public real-time data. Additionally, a modified long short-term memory (LSTM) was adopted to predict the water quality and provide an early warning for pollution risks. According to geographic information technology, this system can show the process of spatial and temporal variations of hydrology and water quality in China. At the same time, the current and future water quality of important monitoring sites can be quickly evaluated and predicted, together with the pollution-risk early warning. The data collected and the water-quality-prediction technique in the system can be shared and used for supporting hydrology and in water quality research and management." @default.
- W4296462982 created "2022-09-20" @default.
- W4296462982 creator A5006563836 @default.
- W4296462982 creator A5014350342 @default.
- W4296462982 creator A5017376115 @default.
- W4296462982 creator A5032980760 @default.
- W4296462982 creator A5053718127 @default.
- W4296462982 creator A5057055806 @default.
- W4296462982 creator A5070652198 @default.
- W4296462982 date "2022-09-19" @default.
- W4296462982 modified "2023-09-27" @default.
- W4296462982 title "Water-Quality Assessment and Pollution-Risk Early-Warning System Based on Web Crawler Technology and LSTM" @default.
- W4296462982 cites W1982239205 @default.
- W4296462982 cites W1992192353 @default.
- W4296462982 cites W2017700386 @default.
- W4296462982 cites W2064675550 @default.
- W4296462982 cites W2081059972 @default.
- W4296462982 cites W2520098280 @default.
- W4296462982 cites W2783231802 @default.
- W4296462982 cites W2794597630 @default.
- W4296462982 cites W2799390222 @default.
- W4296462982 cites W2809190938 @default.
- W4296462982 cites W2883104444 @default.
- W4296462982 cites W2908810021 @default.
- W4296462982 cites W2930669685 @default.
- W4296462982 cites W2944905287 @default.
- W4296462982 cites W2986115611 @default.
- W4296462982 cites W2995725946 @default.
- W4296462982 cites W3005619874 @default.
- W4296462982 cites W3006671182 @default.
- W4296462982 cites W3015568951 @default.
- W4296462982 cites W3022787740 @default.
- W4296462982 cites W3036740146 @default.
- W4296462982 cites W3129357156 @default.
- W4296462982 cites W3133385693 @default.
- W4296462982 cites W3142526242 @default.
- W4296462982 cites W3153880972 @default.
- W4296462982 cites W3154991665 @default.
- W4296462982 cites W3155828193 @default.
- W4296462982 cites W3157049398 @default.
- W4296462982 cites W3165371355 @default.
- W4296462982 cites W3169451202 @default.
- W4296462982 cites W3193572856 @default.
- W4296462982 cites W3199173531 @default.
- W4296462982 cites W4210861684 @default.
- W4296462982 cites W4220737375 @default.
- W4296462982 cites W4289134207 @default.
- W4296462982 doi "https://doi.org/10.3390/ijerph191811818" @default.
- W4296462982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36142084" @default.
- W4296462982 hasPublicationYear "2022" @default.
- W4296462982 type Work @default.
- W4296462982 citedByCount "1" @default.
- W4296462982 countsByYear W42964629822023 @default.
- W4296462982 crossrefType "journal-article" @default.
- W4296462982 hasAuthorship W4296462982A5006563836 @default.
- W4296462982 hasAuthorship W4296462982A5014350342 @default.
- W4296462982 hasAuthorship W4296462982A5017376115 @default.
- W4296462982 hasAuthorship W4296462982A5032980760 @default.
- W4296462982 hasAuthorship W4296462982A5053718127 @default.
- W4296462982 hasAuthorship W4296462982A5057055806 @default.
- W4296462982 hasAuthorship W4296462982A5070652198 @default.
- W4296462982 hasBestOaLocation W42964629821 @default.
- W4296462982 hasConcept C105795698 @default.
- W4296462982 hasConcept C107826830 @default.
- W4296462982 hasConcept C107872376 @default.
- W4296462982 hasConcept C111472728 @default.
- W4296462982 hasConcept C127413603 @default.
- W4296462982 hasConcept C133462117 @default.
- W4296462982 hasConcept C136764020 @default.
- W4296462982 hasConcept C13743948 @default.
- W4296462982 hasConcept C138885662 @default.
- W4296462982 hasConcept C176217482 @default.
- W4296462982 hasConcept C185592680 @default.
- W4296462982 hasConcept C187320778 @default.
- W4296462982 hasConcept C18903297 @default.
- W4296462982 hasConcept C21547014 @default.
- W4296462982 hasConcept C24756922 @default.
- W4296462982 hasConcept C2779296788 @default.
- W4296462982 hasConcept C2779530757 @default.
- W4296462982 hasConcept C2780797713 @default.
- W4296462982 hasConcept C29825287 @default.
- W4296462982 hasConcept C33923547 @default.
- W4296462982 hasConcept C39432304 @default.
- W4296462982 hasConcept C41008148 @default.
- W4296462982 hasConcept C521259446 @default.
- W4296462982 hasConcept C76155785 @default.
- W4296462982 hasConcept C76886044 @default.
- W4296462982 hasConcept C77088390 @default.
- W4296462982 hasConcept C86803240 @default.
- W4296462982 hasConcept C90195498 @default.
- W4296462982 hasConceptScore W4296462982C105795698 @default.
- W4296462982 hasConceptScore W4296462982C107826830 @default.
- W4296462982 hasConceptScore W4296462982C107872376 @default.
- W4296462982 hasConceptScore W4296462982C111472728 @default.
- W4296462982 hasConceptScore W4296462982C127413603 @default.
- W4296462982 hasConceptScore W4296462982C133462117 @default.
- W4296462982 hasConceptScore W4296462982C136764020 @default.
- W4296462982 hasConceptScore W4296462982C13743948 @default.