Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296468675> ?p ?o ?g. }
- W4296468675 endingPage "116261" @default.
- W4296468675 startingPage "116261" @default.
- W4296468675 abstract "Due to land-use and hydrology changes, people are constantly exposed to floods. The adverse impact of floods is greater on vulnerable populations that disproportionately inhabit flood-prone areas. This paper reports a comprehensive study on flood vulnerability of flood prone areas in residential areas of the Tajan watershed, Iran in two periods before 2006 and after 2006. Flood prone area were determined by the random forest (RF) and K-nearest neighbor (KNN) machine learning methods. To reduce time and cost, the vulnerability was assessed only in areas with very high flood hazard using 4 main criteria (social, policy, economic, infrastructure), 40 items, and 210 questionnaires across 40 villages. Independent t-test, Kruskal-Wallis, and paired t-test were used for statistical analysis of questionnaire data. The results of machine learning models (MLMs) showed that the RF model with AUC = 0.92% is more accurate in determining flood prone areas. The results of paired t-test showed that the three criteria of social (mean P1 = 2.97 and P2 = 3.35), infrastructure (mean P1 = 2.88 and P2 = 3.25), and policy (mean P1 = 3.02 and P2 = 3.50) had significant changes in both periods. The Kruskal-Wallis test also revealed the mean of all four criteria in both periods and all sub-watersheds, except three sub-watersheds 10 (Khalkhil village), 19 (Tellarem and Kerasp villages), and 23 (Dinehsar and Jafarabad), had a significant difference. The results of the t-test also showed a decrease in vulnerability in the second period (before 2006) compared to the first period (after 2006), so the number of sub-watersheds in the very high vulnerability class was more in the first period than in the second period. A vulnerability map was developed using three factors of risk zone area, area of each sub-watershed, and population of each sub-watershed." @default.
- W4296468675 created "2022-09-21" @default.
- W4296468675 creator A5011558908 @default.
- W4296468675 creator A5075837487 @default.
- W4296468675 creator A5087279621 @default.
- W4296468675 date "2022-12-01" @default.
- W4296468675 modified "2023-10-18" @default.
- W4296468675 title "Predicting temporal and spatial variability in flood vulnerability and risk of rural communities at the watershed scale" @default.
- W4296468675 cites W1892877687 @default.
- W4296468675 cites W1947997293 @default.
- W4296468675 cites W1976873039 @default.
- W4296468675 cites W1983413249 @default.
- W4296468675 cites W2016770773 @default.
- W4296468675 cites W2085774897 @default.
- W4296468675 cites W2110940238 @default.
- W4296468675 cites W2143481518 @default.
- W4296468675 cites W2302006775 @default.
- W4296468675 cites W2592397024 @default.
- W4296468675 cites W2606410864 @default.
- W4296468675 cites W2606436201 @default.
- W4296468675 cites W2606804832 @default.
- W4296468675 cites W2769948648 @default.
- W4296468675 cites W2792372451 @default.
- W4296468675 cites W2895196240 @default.
- W4296468675 cites W2904232869 @default.
- W4296468675 cites W2911964244 @default.
- W4296468675 cites W2985766090 @default.
- W4296468675 cites W2993767981 @default.
- W4296468675 cites W2998297225 @default.
- W4296468675 cites W3010746207 @default.
- W4296468675 cites W3026429907 @default.
- W4296468675 cites W3080431957 @default.
- W4296468675 cites W3119728054 @default.
- W4296468675 cites W3130601490 @default.
- W4296468675 cites W3211978597 @default.
- W4296468675 cites W4379014164 @default.
- W4296468675 cites W3147082496 @default.
- W4296468675 doi "https://doi.org/10.1016/j.jenvman.2022.116261" @default.
- W4296468675 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36150353" @default.
- W4296468675 hasPublicationYear "2022" @default.
- W4296468675 type Work @default.
- W4296468675 citedByCount "1" @default.
- W4296468675 countsByYear W42964686752023 @default.
- W4296468675 crossrefType "journal-article" @default.
- W4296468675 hasAuthorship W4296468675A5011558908 @default.
- W4296468675 hasAuthorship W4296468675A5075837487 @default.
- W4296468675 hasAuthorship W4296468675A5087279621 @default.
- W4296468675 hasConcept C100970517 @default.
- W4296468675 hasConcept C118552586 @default.
- W4296468675 hasConcept C119857082 @default.
- W4296468675 hasConcept C127413603 @default.
- W4296468675 hasConcept C150547873 @default.
- W4296468675 hasConcept C166957645 @default.
- W4296468675 hasConcept C187320778 @default.
- W4296468675 hasConcept C18903297 @default.
- W4296468675 hasConcept C205649164 @default.
- W4296468675 hasConcept C27415008 @default.
- W4296468675 hasConcept C2778755073 @default.
- W4296468675 hasConcept C2779501324 @default.
- W4296468675 hasConcept C38652104 @default.
- W4296468675 hasConcept C39432304 @default.
- W4296468675 hasConcept C41008148 @default.
- W4296468675 hasConcept C49261128 @default.
- W4296468675 hasConcept C58640448 @default.
- W4296468675 hasConcept C71924100 @default.
- W4296468675 hasConcept C74256435 @default.
- W4296468675 hasConcept C76886044 @default.
- W4296468675 hasConcept C86803240 @default.
- W4296468675 hasConcept C95713431 @default.
- W4296468675 hasConceptScore W4296468675C100970517 @default.
- W4296468675 hasConceptScore W4296468675C118552586 @default.
- W4296468675 hasConceptScore W4296468675C119857082 @default.
- W4296468675 hasConceptScore W4296468675C127413603 @default.
- W4296468675 hasConceptScore W4296468675C150547873 @default.
- W4296468675 hasConceptScore W4296468675C166957645 @default.
- W4296468675 hasConceptScore W4296468675C187320778 @default.
- W4296468675 hasConceptScore W4296468675C18903297 @default.
- W4296468675 hasConceptScore W4296468675C205649164 @default.
- W4296468675 hasConceptScore W4296468675C27415008 @default.
- W4296468675 hasConceptScore W4296468675C2778755073 @default.
- W4296468675 hasConceptScore W4296468675C2779501324 @default.
- W4296468675 hasConceptScore W4296468675C38652104 @default.
- W4296468675 hasConceptScore W4296468675C39432304 @default.
- W4296468675 hasConceptScore W4296468675C41008148 @default.
- W4296468675 hasConceptScore W4296468675C49261128 @default.
- W4296468675 hasConceptScore W4296468675C58640448 @default.
- W4296468675 hasConceptScore W4296468675C71924100 @default.
- W4296468675 hasConceptScore W4296468675C74256435 @default.
- W4296468675 hasConceptScore W4296468675C76886044 @default.
- W4296468675 hasConceptScore W4296468675C86803240 @default.
- W4296468675 hasConceptScore W4296468675C95713431 @default.
- W4296468675 hasLocation W42964686751 @default.
- W4296468675 hasLocation W42964686752 @default.
- W4296468675 hasOpenAccess W4296468675 @default.
- W4296468675 hasPrimaryLocation W42964686751 @default.
- W4296468675 hasRelatedWork W1989006104 @default.
- W4296468675 hasRelatedWork W2113757405 @default.
- W4296468675 hasRelatedWork W2143161978 @default.