Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296473467> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4296473467 endingPage "734" @default.
- W4296473467 startingPage "724" @default.
- W4296473467 abstract "The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13–15 seconds." @default.
- W4296473467 created "2022-09-21" @default.
- W4296473467 creator A5002307980 @default.
- W4296473467 creator A5019470583 @default.
- W4296473467 creator A5043832490 @default.
- W4296473467 creator A5053229906 @default.
- W4296473467 date "2023-03-01" @default.
- W4296473467 modified "2023-10-13" @default.
- W4296473467 title "Automatic Design System With Generative Adversarial Network and Convolutional Neural Network for Optimization Design of Interior Permanent Magnet Synchronous Motor" @default.
- W4296473467 cites W2022485595 @default.
- W4296473467 cites W2071020865 @default.
- W4296473467 cites W2110828487 @default.
- W4296473467 cites W2126105956 @default.
- W4296473467 cites W2194775991 @default.
- W4296473467 cites W2417793772 @default.
- W4296473467 cites W2749212745 @default.
- W4296473467 cites W2765118791 @default.
- W4296473467 cites W2773229833 @default.
- W4296473467 cites W2912472836 @default.
- W4296473467 cites W2966449184 @default.
- W4296473467 cites W2999000694 @default.
- W4296473467 cites W2999123549 @default.
- W4296473467 cites W3004591037 @default.
- W4296473467 cites W3021613070 @default.
- W4296473467 cites W3095251911 @default.
- W4296473467 cites W3107530753 @default.
- W4296473467 cites W3123232274 @default.
- W4296473467 cites W3130456167 @default.
- W4296473467 cites W3157462940 @default.
- W4296473467 cites W3177636168 @default.
- W4296473467 doi "https://doi.org/10.1109/tec.2022.3208129" @default.
- W4296473467 hasPublicationYear "2023" @default.
- W4296473467 type Work @default.
- W4296473467 citedByCount "5" @default.
- W4296473467 countsByYear W42964734672023 @default.
- W4296473467 crossrefType "journal-article" @default.
- W4296473467 hasAuthorship W4296473467A5002307980 @default.
- W4296473467 hasAuthorship W4296473467A5019470583 @default.
- W4296473467 hasAuthorship W4296473467A5043832490 @default.
- W4296473467 hasAuthorship W4296473467A5053229906 @default.
- W4296473467 hasBestOaLocation W42964734671 @default.
- W4296473467 hasConcept C111919701 @default.
- W4296473467 hasConcept C119599485 @default.
- W4296473467 hasConcept C119857082 @default.
- W4296473467 hasConcept C127413603 @default.
- W4296473467 hasConcept C133731056 @default.
- W4296473467 hasConcept C135628077 @default.
- W4296473467 hasConcept C154945302 @default.
- W4296473467 hasConcept C199845137 @default.
- W4296473467 hasConcept C41008148 @default.
- W4296473467 hasConcept C50644808 @default.
- W4296473467 hasConcept C66938386 @default.
- W4296473467 hasConcept C71376005 @default.
- W4296473467 hasConcept C81363708 @default.
- W4296473467 hasConceptScore W4296473467C111919701 @default.
- W4296473467 hasConceptScore W4296473467C119599485 @default.
- W4296473467 hasConceptScore W4296473467C119857082 @default.
- W4296473467 hasConceptScore W4296473467C127413603 @default.
- W4296473467 hasConceptScore W4296473467C133731056 @default.
- W4296473467 hasConceptScore W4296473467C135628077 @default.
- W4296473467 hasConceptScore W4296473467C154945302 @default.
- W4296473467 hasConceptScore W4296473467C199845137 @default.
- W4296473467 hasConceptScore W4296473467C41008148 @default.
- W4296473467 hasConceptScore W4296473467C50644808 @default.
- W4296473467 hasConceptScore W4296473467C66938386 @default.
- W4296473467 hasConceptScore W4296473467C71376005 @default.
- W4296473467 hasConceptScore W4296473467C81363708 @default.
- W4296473467 hasIssue "1" @default.
- W4296473467 hasLocation W42964734671 @default.
- W4296473467 hasLocation W42964734672 @default.
- W4296473467 hasLocation W42964734673 @default.
- W4296473467 hasOpenAccess W4296473467 @default.
- W4296473467 hasPrimaryLocation W42964734671 @default.
- W4296473467 hasRelatedWork W2748454020 @default.
- W4296473467 hasRelatedWork W2961085424 @default.
- W4296473467 hasRelatedWork W3016958897 @default.
- W4296473467 hasRelatedWork W3021430260 @default.
- W4296473467 hasRelatedWork W3027997911 @default.
- W4296473467 hasRelatedWork W3119610945 @default.
- W4296473467 hasRelatedWork W3181746755 @default.
- W4296473467 hasRelatedWork W4287776258 @default.
- W4296473467 hasRelatedWork W4306674287 @default.
- W4296473467 hasRelatedWork W4224009465 @default.
- W4296473467 hasVolume "38" @default.
- W4296473467 isParatext "false" @default.
- W4296473467 isRetracted "false" @default.
- W4296473467 workType "article" @default.