Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296474809> ?p ?o ?g. }
- W4296474809 endingPage "109391" @default.
- W4296474809 startingPage "109391" @default.
- W4296474809 abstract "To discriminate among three poultry meat types (hybrid broiler, hybrid broiler affected by breast myopathies, and slow-growing native breed), and to predict the proximate and the amino acid (AA) composition of breast meat, two NIRs (Near-Infrared) instruments operating between 850 and 2500 nm coupled with chemometric algorithms and Machine Learning (ML) approaches, were tested. The Partial Least Square Discriminant Analysis was performed for genotype identification, resulting in a Mathew Correlation Coefficient (MCC) ranging from 0.61 to 1.00, according to the spectra pretreatments and instrument adopted. The Partial Least Square Regression allowed reaching a high cross-validation determination coefficient (R2cv) for crude protein (0.98) and ether extract (0.99), while only three AA (aspartic acid, alanine and methionine) reached R2cv > 0.55. The latter predictions were successfully used to discriminate between genotypes using Factorial Discriminant Analysis, with an MCC ranging from 0.67 to 0.95. Overall, both tested NIRs instruments allowed to determine the chemical composition of fresh and freeze-dried chicken meat. In this sense, a significant improvement of NIRs data interpretability was achieved thanks to the use of ML algorithms, as it was possible to discriminate the chemical composition of meat depending on the genetic group and the presence of breast myopathies." @default.
- W4296474809 created "2022-09-21" @default.
- W4296474809 creator A5028085216 @default.
- W4296474809 creator A5032124824 @default.
- W4296474809 creator A5054439642 @default.
- W4296474809 creator A5066515497 @default.
- W4296474809 creator A5070581251 @default.
- W4296474809 date "2023-02-01" @default.
- W4296474809 modified "2023-09-30" @default.
- W4296474809 title "Testing two NIRs instruments to predict chicken breast meat quality and exploiting machine learning approaches to discriminate among genotypes and presence of myopathies" @default.
- W4296474809 cites W1745028821 @default.
- W4296474809 cites W1969975100 @default.
- W4296474809 cites W1974523379 @default.
- W4296474809 cites W1976493867 @default.
- W4296474809 cites W1980770554 @default.
- W4296474809 cites W1986786163 @default.
- W4296474809 cites W1996997839 @default.
- W4296474809 cites W2012358846 @default.
- W4296474809 cites W2016090370 @default.
- W4296474809 cites W2016712657 @default.
- W4296474809 cites W2016816890 @default.
- W4296474809 cites W2019703500 @default.
- W4296474809 cites W2034778619 @default.
- W4296474809 cites W2035316777 @default.
- W4296474809 cites W2044851306 @default.
- W4296474809 cites W2065084513 @default.
- W4296474809 cites W2068128918 @default.
- W4296474809 cites W2075704051 @default.
- W4296474809 cites W2077211937 @default.
- W4296474809 cites W2085401964 @default.
- W4296474809 cites W2099461103 @default.
- W4296474809 cites W2102184039 @default.
- W4296474809 cites W2104530787 @default.
- W4296474809 cites W2109606373 @default.
- W4296474809 cites W2113626591 @default.
- W4296474809 cites W2122265902 @default.
- W4296474809 cites W2128324288 @default.
- W4296474809 cites W2152962630 @default.
- W4296474809 cites W2158627020 @default.
- W4296474809 cites W2166366638 @default.
- W4296474809 cites W2392087356 @default.
- W4296474809 cites W2436973322 @default.
- W4296474809 cites W2477311737 @default.
- W4296474809 cites W2560387397 @default.
- W4296474809 cites W2591691368 @default.
- W4296474809 cites W2593017696 @default.
- W4296474809 cites W2620378345 @default.
- W4296474809 cites W2748522833 @default.
- W4296474809 cites W2803419058 @default.
- W4296474809 cites W2885770726 @default.
- W4296474809 cites W2888098998 @default.
- W4296474809 cites W2902278104 @default.
- W4296474809 cites W2909082699 @default.
- W4296474809 cites W2909240281 @default.
- W4296474809 cites W2909937486 @default.
- W4296474809 cites W2914525256 @default.
- W4296474809 cites W2991155065 @default.
- W4296474809 cites W2994194762 @default.
- W4296474809 cites W2998357993 @default.
- W4296474809 cites W3048518032 @default.
- W4296474809 cites W3090681244 @default.
- W4296474809 cites W3171925662 @default.
- W4296474809 doi "https://doi.org/10.1016/j.foodcont.2022.109391" @default.
- W4296474809 hasPublicationYear "2023" @default.
- W4296474809 type Work @default.
- W4296474809 citedByCount "0" @default.
- W4296474809 crossrefType "journal-article" @default.
- W4296474809 hasAuthorship W4296474809A5028085216 @default.
- W4296474809 hasAuthorship W4296474809A5032124824 @default.
- W4296474809 hasAuthorship W4296474809A5054439642 @default.
- W4296474809 hasAuthorship W4296474809A5066515497 @default.
- W4296474809 hasAuthorship W4296474809A5070581251 @default.
- W4296474809 hasConcept C105795698 @default.
- W4296474809 hasConcept C140793950 @default.
- W4296474809 hasConcept C153180895 @default.
- W4296474809 hasConcept C154945302 @default.
- W4296474809 hasConcept C185592680 @default.
- W4296474809 hasConcept C22354355 @default.
- W4296474809 hasConcept C2776482104 @default.
- W4296474809 hasConcept C2780289900 @default.
- W4296474809 hasConcept C3018396171 @default.
- W4296474809 hasConcept C31903555 @default.
- W4296474809 hasConcept C33923547 @default.
- W4296474809 hasConcept C41008148 @default.
- W4296474809 hasConcept C69738355 @default.
- W4296474809 hasConcept C86803240 @default.
- W4296474809 hasConceptScore W4296474809C105795698 @default.
- W4296474809 hasConceptScore W4296474809C140793950 @default.
- W4296474809 hasConceptScore W4296474809C153180895 @default.
- W4296474809 hasConceptScore W4296474809C154945302 @default.
- W4296474809 hasConceptScore W4296474809C185592680 @default.
- W4296474809 hasConceptScore W4296474809C22354355 @default.
- W4296474809 hasConceptScore W4296474809C2776482104 @default.
- W4296474809 hasConceptScore W4296474809C2780289900 @default.
- W4296474809 hasConceptScore W4296474809C3018396171 @default.
- W4296474809 hasConceptScore W4296474809C31903555 @default.
- W4296474809 hasConceptScore W4296474809C33923547 @default.
- W4296474809 hasConceptScore W4296474809C41008148 @default.