Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296475128> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4296475128 endingPage "978" @default.
- W4296475128 startingPage "971" @default.
- W4296475128 abstract "Significance of machine learning (ML), deep learning (DL) techniques and the availability of Electronic Health Records (EHR) has motivated the need of automated diagnosis system. Furthermore, this development has transformed the health care systems. Recently, several ML and DL models has been proposed for various diseases and has shown the significant outcomes as well. Unfortunately, Urinary tract infections (UTI) is among the minor diseases that is not investigated a lot interms of diagnosing using computation intelligence techniques. However, these models lack the reliability due to the black box nature of the highly complex logic model. Therefore, we attempt to develop an interpretable deep learning (DL) model for the diagnosis of UTI using the dataset of emergency department (ED) patients from UK. Several sets of experiments were conducted using complete dataset, reduced attribute set identified using recursive feature elimination (RFE) and using the attributes identified by the baseline study. The proposed DL model has improved the baseline study accuracy from 0.875 to 0.9275 for 184 feature and 0.859 to 0.943 for the reduced feature. Furthermore, the model has outperformed interms of sensitivity and specificity as well. Due to the data imbalance positive predicted value (PPV), negative predicted value (NPV) and Youden Index was also used for evaluating the performance of the model. The proposed DL model has achieved the highest outcome using 18 attributes selected with RFE technique. The proposed model will produce reliability in the diagnosis made by the model and provide confidence to the doctors to adopt the system in the real life." @default.
- W4296475128 created "2022-09-21" @default.
- W4296475128 creator A5033964908 @default.
- W4296475128 date "2022-08-31" @default.
- W4296475128 modified "2023-10-18" @default.
- W4296475128 title "Explainable Artificial Intelligence (XAI) Model for the Diagnosis of Urinary Tract Infections in Emergency Care Patients" @default.
- W4296475128 doi "https://doi.org/10.18280/mmep.090414" @default.
- W4296475128 hasPublicationYear "2022" @default.
- W4296475128 type Work @default.
- W4296475128 citedByCount "0" @default.
- W4296475128 crossrefType "journal-article" @default.
- W4296475128 hasAuthorship W4296475128A5033964908 @default.
- W4296475128 hasBestOaLocation W42964751281 @default.
- W4296475128 hasConcept C111368507 @default.
- W4296475128 hasConcept C118552586 @default.
- W4296475128 hasConcept C119857082 @default.
- W4296475128 hasConcept C121332964 @default.
- W4296475128 hasConcept C124101348 @default.
- W4296475128 hasConcept C12725497 @default.
- W4296475128 hasConcept C127313418 @default.
- W4296475128 hasConcept C127413603 @default.
- W4296475128 hasConcept C138885662 @default.
- W4296475128 hasConcept C154945302 @default.
- W4296475128 hasConcept C163258240 @default.
- W4296475128 hasConcept C177264268 @default.
- W4296475128 hasConcept C199360897 @default.
- W4296475128 hasConcept C21200559 @default.
- W4296475128 hasConcept C24326235 @default.
- W4296475128 hasConcept C2776401178 @default.
- W4296475128 hasConcept C2780724011 @default.
- W4296475128 hasConcept C41008148 @default.
- W4296475128 hasConcept C41895202 @default.
- W4296475128 hasConcept C43214815 @default.
- W4296475128 hasConcept C43346845 @default.
- W4296475128 hasConcept C58471807 @default.
- W4296475128 hasConcept C62520636 @default.
- W4296475128 hasConcept C71924100 @default.
- W4296475128 hasConceptScore W4296475128C111368507 @default.
- W4296475128 hasConceptScore W4296475128C118552586 @default.
- W4296475128 hasConceptScore W4296475128C119857082 @default.
- W4296475128 hasConceptScore W4296475128C121332964 @default.
- W4296475128 hasConceptScore W4296475128C124101348 @default.
- W4296475128 hasConceptScore W4296475128C12725497 @default.
- W4296475128 hasConceptScore W4296475128C127313418 @default.
- W4296475128 hasConceptScore W4296475128C127413603 @default.
- W4296475128 hasConceptScore W4296475128C138885662 @default.
- W4296475128 hasConceptScore W4296475128C154945302 @default.
- W4296475128 hasConceptScore W4296475128C163258240 @default.
- W4296475128 hasConceptScore W4296475128C177264268 @default.
- W4296475128 hasConceptScore W4296475128C199360897 @default.
- W4296475128 hasConceptScore W4296475128C21200559 @default.
- W4296475128 hasConceptScore W4296475128C24326235 @default.
- W4296475128 hasConceptScore W4296475128C2776401178 @default.
- W4296475128 hasConceptScore W4296475128C2780724011 @default.
- W4296475128 hasConceptScore W4296475128C41008148 @default.
- W4296475128 hasConceptScore W4296475128C41895202 @default.
- W4296475128 hasConceptScore W4296475128C43214815 @default.
- W4296475128 hasConceptScore W4296475128C43346845 @default.
- W4296475128 hasConceptScore W4296475128C58471807 @default.
- W4296475128 hasConceptScore W4296475128C62520636 @default.
- W4296475128 hasConceptScore W4296475128C71924100 @default.
- W4296475128 hasIssue "4" @default.
- W4296475128 hasLocation W42964751281 @default.
- W4296475128 hasOpenAccess W4296475128 @default.
- W4296475128 hasPrimaryLocation W42964751281 @default.
- W4296475128 hasRelatedWork W2961085424 @default.
- W4296475128 hasRelatedWork W3046775127 @default.
- W4296475128 hasRelatedWork W3170094116 @default.
- W4296475128 hasRelatedWork W4205958290 @default.
- W4296475128 hasRelatedWork W4285260836 @default.
- W4296475128 hasRelatedWork W4286629047 @default.
- W4296475128 hasRelatedWork W4306321456 @default.
- W4296475128 hasRelatedWork W4306674287 @default.
- W4296475128 hasRelatedWork W4386462264 @default.
- W4296475128 hasRelatedWork W4224009465 @default.
- W4296475128 hasVolume "9" @default.
- W4296475128 isParatext "false" @default.
- W4296475128 isRetracted "false" @default.
- W4296475128 workType "article" @default.