Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296483387> ?p ?o ?g. }
- W4296483387 abstract "Abstract A multi-fidelity (MF) active learning method is presented for design optimization problems characterized by noisy evaluations of the performance metrics. Namely, a generalized MF surrogate model is used for design-space exploration, exploiting an arbitrary number of hierarchical fidelity levels, i.e., performance evaluations coming from different models, solvers, or discretizations, characterized by different accuracy. The method is intended to accurately predict the design performance while reducing the computational effort required by simulation-driven design (SDD) to achieve the global optimum. The overall MF prediction is evaluated as a low-fidelity trained surrogate corrected with the surrogates of the errors between consecutive fidelity levels. Surrogates are based on stochastic radial basis functions (SRBF) with least squares regression and in-the-loop optimization of hyperparameters to deal with noisy training data. The method adaptively queries new training data, selecting both the design points and the required fidelity level via an active learning approach. This is based on the lower confidence bounding method, which combines the performance prediction and the associated uncertainty to select the most promising design regions. The fidelity levels are selected considering the benefit-cost ratio associated with their use in the training. The method’s performance is assessed and discussed using four analytical tests and three SDD problems based on computational fluid dynamics simulations, namely the shape optimization of a NACA hydrofoil, the DTMB 5415 destroyer, and a roll-on/roll-off passenger ferry. Fidelity levels are provided by both adaptive grid refinement and multi-grid resolution approaches. Under the assumption of a limited budget for function evaluations, the proposed MF method shows better performance in comparison with the model trained by high-fidelity evaluations only." @default.
- W4296483387 created "2022-09-21" @default.
- W4296483387 creator A5005601025 @default.
- W4296483387 creator A5047085967 @default.
- W4296483387 creator A5058949283 @default.
- W4296483387 creator A5062068123 @default.
- W4296483387 creator A5073878030 @default.
- W4296483387 creator A5079572890 @default.
- W4296483387 date "2022-09-20" @default.
- W4296483387 modified "2023-09-24" @default.
- W4296483387 title "A multi-fidelity active learning method for global design optimization problems with noisy evaluations" @default.
- W4296483387 cites W1452366357 @default.
- W4296483387 cites W1974097079 @default.
- W4296483387 cites W1977950026 @default.
- W4296483387 cites W1980849679 @default.
- W4296483387 cites W1981094894 @default.
- W4296483387 cites W1987971958 @default.
- W4296483387 cites W2005563550 @default.
- W4296483387 cites W2021012767 @default.
- W4296483387 cites W2024000425 @default.
- W4296483387 cites W2033876836 @default.
- W4296483387 cites W2035545087 @default.
- W4296483387 cites W2044147720 @default.
- W4296483387 cites W2050263375 @default.
- W4296483387 cites W2052080750 @default.
- W4296483387 cites W2060086908 @default.
- W4296483387 cites W2064285737 @default.
- W4296483387 cites W2081179206 @default.
- W4296483387 cites W2114459240 @default.
- W4296483387 cites W2150593711 @default.
- W4296483387 cites W2161953237 @default.
- W4296483387 cites W2164094775 @default.
- W4296483387 cites W2221579883 @default.
- W4296483387 cites W2313833657 @default.
- W4296483387 cites W2316673954 @default.
- W4296483387 cites W2319329301 @default.
- W4296483387 cites W2416328267 @default.
- W4296483387 cites W2510279142 @default.
- W4296483387 cites W2518314348 @default.
- W4296483387 cites W2611872181 @default.
- W4296483387 cites W2614849607 @default.
- W4296483387 cites W2729558485 @default.
- W4296483387 cites W2746652938 @default.
- W4296483387 cites W2763090371 @default.
- W4296483387 cites W2768640710 @default.
- W4296483387 cites W2810414247 @default.
- W4296483387 cites W2933860896 @default.
- W4296483387 cites W2983281368 @default.
- W4296483387 cites W2996933288 @default.
- W4296483387 cites W3035274195 @default.
- W4296483387 cites W3137349794 @default.
- W4296483387 cites W3187381254 @default.
- W4296483387 cites W3191310146 @default.
- W4296483387 cites W4230514187 @default.
- W4296483387 doi "https://doi.org/10.1007/s00366-022-01728-0" @default.
- W4296483387 hasPublicationYear "2022" @default.
- W4296483387 type Work @default.
- W4296483387 citedByCount "1" @default.
- W4296483387 countsByYear W42964833872023 @default.
- W4296483387 crossrefType "journal-article" @default.
- W4296483387 hasAuthorship W4296483387A5005601025 @default.
- W4296483387 hasAuthorship W4296483387A5047085967 @default.
- W4296483387 hasAuthorship W4296483387A5058949283 @default.
- W4296483387 hasAuthorship W4296483387A5062068123 @default.
- W4296483387 hasAuthorship W4296483387A5073878030 @default.
- W4296483387 hasAuthorship W4296483387A5079572890 @default.
- W4296483387 hasBestOaLocation W42964833871 @default.
- W4296483387 hasConcept C10485038 @default.
- W4296483387 hasConcept C11413529 @default.
- W4296483387 hasConcept C119857082 @default.
- W4296483387 hasConcept C12267149 @default.
- W4296483387 hasConcept C126255220 @default.
- W4296483387 hasConcept C131675550 @default.
- W4296483387 hasConcept C154945302 @default.
- W4296483387 hasConcept C187691185 @default.
- W4296483387 hasConcept C2524010 @default.
- W4296483387 hasConcept C2776459999 @default.
- W4296483387 hasConcept C2778049539 @default.
- W4296483387 hasConcept C33923547 @default.
- W4296483387 hasConcept C41008148 @default.
- W4296483387 hasConcept C63584917 @default.
- W4296483387 hasConcept C76155785 @default.
- W4296483387 hasConcept C8642999 @default.
- W4296483387 hasConceptScore W4296483387C10485038 @default.
- W4296483387 hasConceptScore W4296483387C11413529 @default.
- W4296483387 hasConceptScore W4296483387C119857082 @default.
- W4296483387 hasConceptScore W4296483387C12267149 @default.
- W4296483387 hasConceptScore W4296483387C126255220 @default.
- W4296483387 hasConceptScore W4296483387C131675550 @default.
- W4296483387 hasConceptScore W4296483387C154945302 @default.
- W4296483387 hasConceptScore W4296483387C187691185 @default.
- W4296483387 hasConceptScore W4296483387C2524010 @default.
- W4296483387 hasConceptScore W4296483387C2776459999 @default.
- W4296483387 hasConceptScore W4296483387C2778049539 @default.
- W4296483387 hasConceptScore W4296483387C33923547 @default.
- W4296483387 hasConceptScore W4296483387C41008148 @default.
- W4296483387 hasConceptScore W4296483387C63584917 @default.
- W4296483387 hasConceptScore W4296483387C76155785 @default.
- W4296483387 hasConceptScore W4296483387C8642999 @default.
- W4296483387 hasFunder F4320337345 @default.